An alkaline phosphatase protection assay to investigate trp repressor/operator interactions. 1991

R Q Marmorstein, and M Sprinzl, and P B Sigler
Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637.

We have used an alkaline phosphatase protection assay to investigate the interaction of the trp repressor with its operator sequence. The assay is based on the principle that the trp repressor will protect a terminally 5'-32P-labeled operator DNA fragment from attack by alkaline phosphatase. The optimal oligonucleotide for investigating the trp repressor/operator interaction extends two base pairs from each end of the genetically defined target sequence predicted by in vivo studies [Bass et al. (1987) Genes Dev. 1, 565-572]. The assay works well over a 10,000-fold range of protein/DNA affinity and is used to show that the corepressor, L-tryptophan, causes the liganded repressor to bind a 20 base pair trp operator duplex 6400 times more strongly than the unliganded aporepressor. The affinity of the trp repressor for operators containing symmetrical mutations was interpreted in terms of the trp repressor/operator crystal structure as follows: (1) Direct hydrogen bonds with the functional groups of G-9 of the trp operator and the side chain of Arg 69 of the trp repressor contribute to DNA-binding specificity. (2) G-6 of the trp operator is critical for DNA-binding specificity probably because of the two water-mediated hydrogen bonds between its functional groups and the N-terminus of the trp repressor's E-helix. (3) Sequence-dependent aspects of the trp operator's conformation help stabilize the trp repressor/operator complex.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D009875 Operator Regions, Genetic The regulatory elements of an OPERON to which activators or repressors bind thereby effecting the transcription of GENES in the operon. Operator Region,Operator Regions,Operator, Genetic,Genetic Operator,Genetic Operator Region,Genetic Operator Regions,Genetic Operators,Operator Region, Genetic,Operators, Genetic,Region, Genetic Operator,Region, Operator,Regions, Genetic Operator,Regions, Operator
D010761 Phosphorus Radioisotopes Unstable isotopes of phosphorus that decay or disintegrate emitting radiation. P atoms with atomic weights 28-34 except 31 are radioactive phosphorus isotopes. Radioisotopes, Phosphorus
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond

Related Publications

R Q Marmorstein, and M Sprinzl, and P B Sigler
June 1990, The EMBO journal,
R Q Marmorstein, and M Sprinzl, and P B Sigler
September 1990, The EMBO journal,
R Q Marmorstein, and M Sprinzl, and P B Sigler
March 1993, Biotechnology and bioengineering,
R Q Marmorstein, and M Sprinzl, and P B Sigler
December 1991, The Journal of biological chemistry,
R Q Marmorstein, and M Sprinzl, and P B Sigler
January 1993, European biophysics journal : EBJ,
R Q Marmorstein, and M Sprinzl, and P B Sigler
November 1993, Journal of molecular biology,
R Q Marmorstein, and M Sprinzl, and P B Sigler
November 1999, Journal of protein chemistry,
R Q Marmorstein, and M Sprinzl, and P B Sigler
January 1992, Nucleic acids research,
R Q Marmorstein, and M Sprinzl, and P B Sigler
May 1994, Journal of molecular biology,
R Q Marmorstein, and M Sprinzl, and P B Sigler
April 1999, Journal of molecular biology,
Copied contents to your clipboard!