A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. 2009

Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA. kwalter2@nd.edu

Thermal hysteresis (TH), a difference between the melting and freezing points of a solution that is indicative of the presence of large-molecular-mass antifreezes (e.g., antifreeze proteins), has been described in animals, plants, bacteria, and fungi. Although all previously described TH-producing biomolecules are proteins, most thermal hysteresis factors (THFs) have not yet been structurally characterized, and none have been characterized from a freeze-tolerant animal. We isolated a highly active THF from the freeze-tolerant beetle, Upis ceramboides, by means of ice affinity. Amino acid chromatographic analysis, polyacrylamide gel electrophoresis, UV-Vis spectrophotometry, and NMR spectroscopy indicated that the THF contained little or no protein, yet it produced 3.7 +/- 0.3 degrees C of TH at 5 mg/ml, comparable to that of the most active insect antifreeze proteins. Compositional and structural analyses indicated that this antifreeze contains a beta-mannopyranosyl-(1-->4) beta-xylopyranose backbone and a fatty acid component, although the lipid may not be covalently linked to the saccharide. Consistent with the proposed structure, treatment with endo-beta-(1-->4)xylanase ablated TH activity. This xylomannan is the first TH-producing antifreeze isolated from a freeze-tolerant animal and the first in a new class of highly active THFs that contain little or no protein.

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000220 Adaptation, Biological Changes in biological features that help an organism cope with its ENVIRONMENT. These changes include physiological (ADAPTATION, PHYSIOLOGICAL), phenotypic and genetic changes. Adaptation, Biologic,Biological Adaptation,Biologic Adaptation
D000413 Alaska State of the UNITED STATES OF AMERICA bounded on the east by Canada and on the north, west, and south by the Pacific Ocean and the Bering Sea. Aleutian Islands
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001517 Coleoptera Order of winged insects also known as beetles comprising over 350,000 species in 150 families. They possess hard bodies with mouthparts adapted for chewing. Beetles,Beetle
D013056 Spectrophotometry, Ultraviolet Determination of the spectra of ultraviolet absorption by specific molecules in gases or liquids, for example Cl2, SO2, NO2, CS2, ozone, mercury vapor, and various unsaturated compounds. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Ultraviolet Spectrophotometry
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry
D021301 Antifreeze Proteins Proteins that bind to ice and modify the growth of ice crystals. They perform a cryoprotective role in a variety of organisms. Antifreeze Glycopeptide,Antifreeze Glycoprotein,Antifreeze Glycoproteins,Antifreeze Peptide,Antifreeze Protein,Thermal Hysteresis Protein,AFGP,Antifreeze Glycopeptides,Antifreeze Peptides,Thermal Hysteresis Proteins,Glycopeptide, Antifreeze,Glycopeptides, Antifreeze,Glycoprotein, Antifreeze,Glycoproteins, Antifreeze,Hysteresis Protein, Thermal,Hysteresis Proteins, Thermal,Peptide, Antifreeze,Peptides, Antifreeze,Protein, Antifreeze,Protein, Thermal Hysteresis,Proteins, Antifreeze,Proteins, Thermal Hysteresis

Related Publications

Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
November 2011, The Journal of organic chemistry,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
January 2002, Journal of insect physiology,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
February 1982, Biochemistry,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
September 2019, International journal of biological macromolecules,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
September 1997, Nature biotechnology,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
December 2005, Cryobiology,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
May 2006, The Journal of chemical physics,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
December 2012, Analytical chemistry,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
June 2023, The journal of physical chemistry. B,
Kent R Walters, and Anthony S Serianni, and Todd Sformo, and Brian M Barnes, and John G Duman
December 2013, Biochemistry,
Copied contents to your clipboard!