Region- and pattern-specific effects of glutamate uptake blockers on epileptiform activity in rat brain slices. 2010

A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
Department of Paediatric Neurology, Heidelberg University, Heidelberg, Germany.

Many epileptic syndromes develop into pharmaco-resistant forms, calling for the development of new anticonvulsant strategies. The transmitter glutamate serves a double role as excitatory transmitter and as precursor for GABA, thus interfering with glutamate uptake may therefore exert complex effects on excitation-inhibition-balance in epileptic networks. In the present study we tested the effect of two different glutamate uptake blockers on acutely induced epileptiform activity in hippocampal-entorhinal cortex slices from adult rats: dihydrokainate (DHK) which blocks predominantly glial glutamate uptake, and threo-beta-benzyloxyaspartic acid (TBOA) which blocks both glial and neuronal glutamate uptake. Three different models were used to induce epileptiform discharges: (i) increasing NMDA receptor-mediated excitation by omitting Mg(2+)-ions; (ii) blocking potassium channels by 4-aminopyridine; (iii) reducing GABA(A) receptor-mediated inhibition by penicillin. Application of DHK or TBOA markedly reduced the frequency of epileptiform discharges in CA1 in the low magnesium and the 4-AP model while pathological activity was increased in the penicillin-model. In contrast, frequency of epileptiform discharges in EC was consistently increased by DHK and TBOA. Effects of DHK were more easily reversible than those of TBOA. Thus glutamate uptake blockers exert variable effects on epileptiform activity, depending on brain region and on the mechanism of ictogenesis.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D014179 Neurotransmitter Uptake Inhibitors Drugs that inhibit the transport of neurotransmitters into axon terminals or into storage vesicles within terminals. For many transmitters, uptake determines the time course of transmitter action so inhibiting uptake prolongs the activity of the transmitter. Blocking uptake may also deplete available transmitter stores. Many clinically important drugs are uptake inhibitors although the indirect reactions of the brain rather than the acute block of uptake itself is often responsible for the therapeutic effects. Reuptake Inhibitors, Neurotransmitter,Transmitter Uptake Inhibitors, Neuronal,Inhibitors, Neurotransmitter Uptake,Uptake Inhibitors, Neurotransmitter,Inhibitors, Neurotransmitter Reuptake,Neurotransmitter Reuptake Inhibitors

Related Publications

A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
January 2010, Brain research,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
July 1998, Neuroscience,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
February 2000, Epilepsy research,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
February 2021, Molecular biology reports,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
July 2000, Journal of neurophysiology,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
January 2000, Neuroscience,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
May 1976, Journal of neurochemistry,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
January 1997, Life sciences,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
September 1987, The Japanese journal of psychiatry and neurology,
A Bertsche, and C Bruehl, and J Pietz, and A Draguhn
January 2008, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections,
Copied contents to your clipboard!