Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats. 1991

R M Kuhn, and L Clarke, and J Carbon
Department of Biological Sciences, University of California, Santa Barbara 93106.

The centromere-associated B' and B DNA sequence repeats of Schizosaccharomyces pombe chromosomes I and II have been found to contain clusters of tRNA genes. The centromere II region (cen2) includes at least 22 tRNA genes distributed among five copies of the B sequence repeat containing genes specifying tRNA(Ile), tRNA(Ala), and tRNA(Val). Individual B repeats are variously associated with other tRNA genes, including those specifying tRNA(Lys), tRNA(Arg), and tRNA(Glu2). The centromere I region (cen1) contains at least six tRNA genes in two copies of the B' repeated element, including genes specifying tRNA(Ile), tRNA(Ala), and tRNA(Glu3). Multiple tandemly arranged clusters of tRNA genes are presumably conserved due to restricted recombination frequencies in the centromere regions.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D012091 Repetitive Sequences, Nucleic Acid Sequences of DNA or RNA that occur in multiple copies. There are several types: INTERSPERSED REPETITIVE SEQUENCES are copies of transposable elements (DNA TRANSPOSABLE ELEMENTS or RETROELEMENTS) dispersed throughout the genome. TERMINAL REPEAT SEQUENCES flank both ends of another sequence, for example, the long terminal repeats (LTRs) on RETROVIRUSES. Variations may be direct repeats, those occurring in the same direction, or inverted repeats, those opposite to each other in direction. TANDEM REPEAT SEQUENCES are copies which lie adjacent to each other, direct or inverted (INVERTED REPEAT SEQUENCES). DNA Repetitious Region,Direct Repeat,Genes, Selfish,Nucleic Acid Repetitive Sequences,Repetitive Region,Selfish DNA,Selfish Genes,DNA, Selfish,Repetitious Region, DNA,Repetitive Sequence,DNA Repetitious Regions,DNAs, Selfish,Direct Repeats,Gene, Selfish,Repeat, Direct,Repeats, Direct,Repetitious Regions, DNA,Repetitive Regions,Repetitive Sequences,Selfish DNAs,Selfish Gene
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

R M Kuhn, and L Clarke, and J Carbon
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
R M Kuhn, and L Clarke, and J Carbon
November 1982, Nature,
R M Kuhn, and L Clarke, and J Carbon
April 1996, Nucleic acids research,
R M Kuhn, and L Clarke, and J Carbon
January 1984, Cold Spring Harbor symposia on quantitative biology,
R M Kuhn, and L Clarke, and J Carbon
October 1979, Nucleic acids research,
R M Kuhn, and L Clarke, and J Carbon
June 1979, Nucleic acids research,
R M Kuhn, and L Clarke, and J Carbon
February 1988, Molecular and cellular biology,
R M Kuhn, and L Clarke, and J Carbon
January 1985, Current genetics,
R M Kuhn, and L Clarke, and J Carbon
November 1989, The Journal of biological chemistry,
Copied contents to your clipboard!