Cytokine signaling in lung: transforming growth factor-beta secretion by lung fibroblasts. 1991

J Kelley, and J P Fabisiak, and K Hawes, and M Absher
Department of Medicine, University of Vermont College of Medicine, Burlington 05405.

Control of growth and phenotypic expression of interstitial fibroblasts is a critical determinant of lung architecture and physiology during processes of growth and remodeling. We examined the ability of lung fibroblasts to produce transforming growth factor-beta (TGF-beta), a cytokine that is known to modulate proliferation and phenotypic expression of mesenchymal cells. Cultures of fibroblasts isolated from rat lungs spontaneously secrete TGF-beta as measured in the standard bioassay of anchorage-independent growth of normal rat kidney (NRK) cells in soft agar. Rat lung fibroblasts secrete TGF-beta in an inactive precursor form. Fibroblasts cultured from adult and fetal rat lungs produced comparable amounts of TGF-beta. The ability of lung fibroblast supernatant fluids to induce colony formation in soft agar could be completely neutralized by preincubation of samples with anti-TGF-beta immunoglobulin (Ig). Anti-platelet-derived growth factor IgG had no effect on anchorage-independent growth of NRK cells driven by rat fibroblast culture supernatant samples. These results indicate that TGF-beta does not require the presence of and interaction with secondary cytokines for its activity. In contrast to the results obtained with rat cells, neither human fetal nor adult lung fibroblasts secreted detectable amount of active TGF-beta or its inactive precursor. This was not due to the presence of TGF-beta inhibitors in fibroblast culture media, because the addition of purified porcine TGF-beta to conditioned medium from human lung fibroblast cultures yielded the expected increase in NRK cell growth in soft agar. These results point to differing cytokine control patterns in the lungs of the two species.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J Kelley, and J P Fabisiak, and K Hawes, and M Absher
January 2024, FASEB bioAdvances,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
April 1995, Molecular and cellular endocrinology,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
November 2001, Archives of biochemistry and biophysics,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
October 1990, American journal of respiratory cell and molecular biology,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
April 2002, Chinese journal of traumatology = Zhonghua chuang shang za zhi,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
April 2007, American journal of physiology. Lung cellular and molecular physiology,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
January 2019, PloS one,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
April 1993, American journal of respiratory cell and molecular biology,
J Kelley, and J P Fabisiak, and K Hawes, and M Absher
May 1990, Arthritis and rheumatism,
Copied contents to your clipboard!