5-methylcytosine in RNA: detection, enzymatic formation and biological functions. 2010

Yuri Motorin, and Frank Lyko, and Mark Helm
Laboratoire ARN-RNP Maturation-Structure-Fonction, Enzymologie Moléculaire et Structurale (AREMS), UMR 7214 CNRS-UHP Faculté des Sciences et Techniques, Université Henri Poincaré, Nancy 1, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France.

The nucleobase modification 5-methylcytosine (m(5)C) is widespread both in DNA and different cellular RNAs. The functions and enzymatic mechanisms of DNA m(5)C-methylation were extensively studied during the last decades. However, the location, the mechanism of formation and the cellular function(s) of the same modified nucleobase in RNA still remain to be elucidated. The recent development of a bisulfite sequencing approach for efficient m(5)C localization in various RNA molecules puts ribo-m(5)C in a highly privileged position as one of the few RNA modifications whose detection is amenable to PCR-based amplification and sequencing methods. Additional progress in the field also includes the characterization of several specific RNA methyltransferase enzymes in various organisms, and the discovery of a new and unexpected link between DNA and RNA m(5)C-methylation. Numerous putative RNA:m(5)C-MTases have now been identified and are awaiting characterization, including the identification of their RNA substrates and their related cellular functions. In order to bring these recent exciting developments into perspective, this review provides an ordered overview of the detection methods for RNA methylation, of the biochemistry, enzymology and molecular biology of the corresponding modification enzymes, and discusses perspectives for the emerging biological functions of these enzymes.

UI MeSH Term Description Entries
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012359 tRNA Methyltransferases Enzymes that catalyze the S-adenosyl-L-methionine-dependent methylation of ribonucleotide bases within a transfer RNA molecule. EC 2.1.1. RNA Methylase,RNA Methylases,RNA, Transfer, Methyltransferases,T RNA Methyltransferases,tRNA Methyltransferase,Methylase, RNA,Methylases, RNA,Methyltransferase, tRNA,Methyltransferases, T RNA,Methyltransferases, tRNA,RNA Methyltransferases, T
D017423 Sequence Analysis, RNA A multistage process that includes cloning, physical mapping, subcloning, sequencing, and information analysis of an RNA SEQUENCE. RNA Sequence Analysis,Sequence Determination, RNA,Analysis, RNA Sequence,Determination, RNA Sequence,Determinations, RNA Sequence,RNA Sequence Determination,RNA Sequence Determinations,RNA Sequencing,Sequence Determinations, RNA,Analyses, RNA Sequence,RNA Sequence Analyses,Sequence Analyses, RNA,Sequencing, RNA
D044503 5-Methylcytosine A methylated nucleotide base found in eukaryotic DNA. In ANIMALS, the DNA METHYLATION of CYTOSINE to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In PLANTS, the methylated sequence is CpNpGp, where N can be any base. 5-Methylcytosine Monohydrochloride,5 Methylcytosine,5 Methylcytosine Monohydrochloride,Monohydrochloride, 5-Methylcytosine
D055162 Biocatalysis The facilitation of biochemical reactions with the aid of naturally occurring catalysts such as ENZYMES.

Related Publications

Yuri Motorin, and Frank Lyko, and Mark Helm
December 2021, Molecular therapy. Nucleic acids,
Yuri Motorin, and Frank Lyko, and Mark Helm
January 2015, Immunological reviews,
Yuri Motorin, and Frank Lyko, and Mark Helm
October 2010, Epigenomics,
Yuri Motorin, and Frank Lyko, and Mark Helm
January 2019, Methods in molecular biology (Clifton, N.J.),
Yuri Motorin, and Frank Lyko, and Mark Helm
January 2024, Nature biotechnology,
Yuri Motorin, and Frank Lyko, and Mark Helm
August 2016, Chemical science,
Yuri Motorin, and Frank Lyko, and Mark Helm
September 2002, Biochemistry,
Yuri Motorin, and Frank Lyko, and Mark Helm
April 2014, Mutation research. Genetic toxicology and environmental mutagenesis,
Yuri Motorin, and Frank Lyko, and Mark Helm
January 2019, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!