Electron Microscope Detection of 5-Methylcytosine on DNA and RNA. 2019

Irene Masiello, and Marco Biggiogera
Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.

5-Methylcytosine is the major epigenetic modification occurring on DNA. It is known to be involved not only in gene expression regulation but also in the control of chromatin structure. However, this modification is also found on different types of RNA, including mRNA. Generally, biomolecular techniques are applied for studying the epigenetic profile of nucleic acids. Here, we describe the ultrastructural detection of 5-methylcytosine as an unusual approach to localize this modification on chromatin regions and/or RNA single molecules. This tool requires a careful sample preparation to preserve antigen epitopes that will be revealed immunocytochemically by a specific anti-5-methylcytosine antibody. The multiple staining procedures that can be adopted allow the identification of both DNA or RNA. A semiquantitative analysis can also be carried out.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D044503 5-Methylcytosine A methylated nucleotide base found in eukaryotic DNA. In ANIMALS, the DNA METHYLATION of CYTOSINE to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In PLANTS, the methylated sequence is CpNpGp, where N can be any base. 5-Methylcytosine Monohydrochloride,5 Methylcytosine,5 Methylcytosine Monohydrochloride,Monohydrochloride, 5-Methylcytosine
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Irene Masiello, and Marco Biggiogera
January 2024, Nature biotechnology,
Irene Masiello, and Marco Biggiogera
October 1988, Journal of chromatography,
Irene Masiello, and Marco Biggiogera
May 1978, Nucleic acids research,
Irene Masiello, and Marco Biggiogera
October 2010, Epigenomics,
Irene Masiello, and Marco Biggiogera
January 2008, Angewandte Chemie (International ed. in English),
Irene Masiello, and Marco Biggiogera
January 2015, RNA biology,
Irene Masiello, and Marco Biggiogera
March 2010, Nucleic acids research,
Irene Masiello, and Marco Biggiogera
January 2019, Methods in molecular biology (Clifton, N.J.),
Irene Masiello, and Marco Biggiogera
November 1997, Nucleic acids research,
Irene Masiello, and Marco Biggiogera
February 1988, Bioorganicheskaia khimiia,
Copied contents to your clipboard!