Phosphoglucomutase of Yersinia pestis is required for autoaggregation and polymyxin B resistance. 2010

Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109-1078, USA.

Yersinia pestis, the causative agent of plague, autoaggregates within a few minutes of cessation of shaking when grown at 28 degrees C. To identify the autoaggregation factor of Y. pestis, we performed mariner-based transposon mutagenesis. Autoaggregation-defective mutants from three different pools were identified, each with a transposon insertion at a different position within the gene encoding phosphoglucomutase (pgmA; y1258). Targeted deletion of pgmA in Y. pestis KIM5 also resulted in loss of autoaggregation. Given the previously defined role for phosphoglucomutase in antimicrobial peptide resistance in other organisms, we tested the KIM5 DeltapgmA mutant for antimicrobial peptide sensitivity. The DeltapgmA mutant displayed >1,000-fold increased sensitivity to polymyxin B compared to the parental Y. pestis strain, KIM5. This sensitivity is not due to changes in lipopolysaccharide (LPS) since the LPSs from both Y. pestis KIM5 and the DeltapgmA mutant are identical based on a comparison of their structures by mass spectrometry (MS), tandem MS, and nuclear magnetic resonance analyses. Furthermore, the ability of polymyxin B to neutralize LPS toxicity was identical for LPS purified from both KIM5 and the DeltapgmA mutant. Our results indicate that increased polymyxin B sensitivity of the DeltapgmA mutant is due to changes in surface structures other than LPS. Experiments with mice via the intravenous and intranasal routes did not demonstrate any virulence defect for the DeltapgmA mutant, nor was flea colonization or blockage affected. Our findings suggest that the activity of PgmA results in modification and/or elaboration of a surface component of Y. pestis responsible for autoaggregation and polymyxin B resistance.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010733 Phosphoglucomutase An enzyme that catalyzes the conversion of alpha D-glucose 1-phosphate to alpha D-glucose 6-phosphate. EC 5.4.2.2. Glucose Phosphomutase,Phosphomutase, Glucose
D010930 Plague An acute infectious disease caused by YERSINIA PESTIS that affects humans, wild rodents, and their ectoparasites. This condition persists due to its firm entrenchment in sylvatic rodent-flea ecosystems throughout the world. Bubonic plague is the most common form. Bubonic Plague,Meningeal Plague,Pneumonic Plague,Pulmonic Plague,Black Death,Black Plague,Septicemic Plague,Yersinia pestis Infection
D011112 Polymyxin B A mixture of polymyxins B1 and B2, obtained from BACILLUS POLYMYXA strains. They are basic polypeptides of about eight amino acids and have cationic detergent action on cell membranes. Polymyxin B is used for treatment of infections with gram-negative bacteria, but may be neurotoxic and nephrotoxic. Aerosporin,Polymyxin B Sulfate
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005260 Female Females

Related Publications

Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
April 2013, Infection and immunity,
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
June 2008, Microbiology (Reading, England),
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
July 2010, Microbiology (Reading, England),
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
September 2001, Journal of bacteriology,
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
February 2008, BMC microbiology,
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
October 2006, Antimicrobial agents and chemotherapy,
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
January 2005, Vestnik Rossiiskoi akademii meditsinskikh nauk,
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
February 2004, Infection and immunity,
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
September 2012, Microbiology (Reading, England),
Suleyman Felek, and Artur Muszyński, and Russell W Carlson, and Tiffany M Tsang, and B Joseph Hinnebusch, and Eric S Krukonis
February 2022, Osong public health and research perspectives,
Copied contents to your clipboard!