Reciprocal enhancement of uptake and toxicity of cadmium and calcium in rainbow trout (Oncorhynchus mykiss) liver mitochondria. 2010

Reginald C Adiele, and Don Stevens, and Collins Kamunde
Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A4P3, Canada.

The interactive effects of cadmium (Cd) and calcium (Ca) on energy metabolism in rainbow trout liver mitochondria were studied to test the prediction that Ca would protect against Cd-induced mitochondrial liability. Isolated rainbow trout liver mitochondria were energized with malate and glutamate and exposed to increasing concentrations (5-100 microM) of Cd and Ca singly and in combination at 15 degrees C. Accumulation of Cd and Ca in the mitochondria and mitochondrial respiration (oxygen consumption) rates were measured. Additionally, un-energized mitochondria were incubated with low doses (1 microM) of Cd and Ca singly and in combination, with time-course measurements of cation accumulation/binding and oxygen consumption rates. In energized actively phosphorylating mitochondria, the uptake rates of both Cd and Ca were dose-dependent and enhanced when administered concurrently. Upon low-dose incubation, Cd accumulation was rapid and peaked in 5 min, while no appreciable uptake of Ca occurred. Functionally, the resting (state 4, ADP-limited) respiration rate was not affected in the dose-response exposure, but it decreased remarkably on low-dose incubation. Adenosine diphosphate (ADP)-stimulated respiration (state 3) rate was impaired dose-dependently with maximal inhibitions (at the highest dose, 100 microM) of 32, 64 and 73% for Ca, Cd, and combined exposures, respectively. The combined effects of Ca and Cd suggested synergistic (more than additive) action and partial additivity of effects at low and higher doses of the two cations, respectively. Moreover, on a molar basis, Cd was twice as toxic as Ca to rainbow trout liver mitochondria and when combined, approximately 90% of the effects were attributable to Cd. The coupling efficiency, as measured by respiratory control ratio (RCR) and phosphorylation efficiency, measured as ADP/O ratio, both decreased as the exposure dosage and duration increased. In addition, Cd and Ca exposure decreased mitochondrial proton leak (state 4+ respiration) rates on prolonged exposure possibly by inhibiting processes that generate mitochondrial membrane potential, the force that drives proton leak. Overall these data suggest that the widely accepted theme that Ca and Cd are competitive antagonists does not hold for mitochondrial effects and that Cd and Ca cooperate to impair oxidative phosphorylation in rainbow trout liver mitochondria.

UI MeSH Term Description Entries
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005880 Gills Paired respiratory organs of fishes and some amphibians that are analogous to lungs. They are richly supplied with blood vessels by which oxygen and carbon dioxide are exchanged directly with the environment. Gill
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D014874 Water Pollutants, Chemical Chemical compounds which pollute the water of rivers, streams, lakes, the sea, reservoirs, or other bodies of water. Chemical Water Pollutants,Landfill Leachate,Leachate, Landfill,Pollutants, Chemical Water
D017686 Oncorhynchus mykiss A large stout-bodied, sometimes anadromous, TROUT found in still and flowing waters of the Pacific coast from southern California to Alaska. It has a greenish back, a whitish belly, and pink, red, or lavender stripes on the sides, with usually a sprinkling of black dots. It is highly regarded as a sport and food fish. Its former name was Salmo gairdneri. The sea-run rainbow trouts are often called steelheads. Redband trouts refer to interior populations of rainbows. Salmo gairdneri,Steelhead,Trout, Rainbow,Trout, Redband,Rainbow Trout,Redband Trout,Steelheads

Related Publications

Reginald C Adiele, and Don Stevens, and Collins Kamunde
November 1994, Fish physiology and biochemistry,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
October 2003, Aquatic toxicology (Amsterdam, Netherlands),
Reginald C Adiele, and Don Stevens, and Collins Kamunde
April 1997, Toxicon : official journal of the International Society on Toxinology,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
September 2007, Toxicology in vitro : an international journal published in association with BIBRA,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
October 1992, Fish physiology and biochemistry,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
April 1993, Archives of biochemistry and biophysics,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
July 2022, Drug and chemical toxicology,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
April 2015, Environmental toxicology and chemistry,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
July 2000, Biology of reproduction,
Reginald C Adiele, and Don Stevens, and Collins Kamunde
October 1994, Ecotoxicology and environmental safety,
Copied contents to your clipboard!