[Analysis of the aminoacyl-tRNA synthetase genes of silkworm (Bombyx mori)]. 2009

Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
Medical College of Soochow University, Suzhou 215123, China. guanglicao@hotmail.com

For further research on number, type, composition and origin of Bombyx mori aminoacyl-tRNA synthetase (BmaaRS) genes, in silico cloning was performed with Bombyx mori genomic and EST databases. There might be two different sets of aaRS nuclear gene in Bombxy nori genome, which encode mitochondrial BmaaRS and cytoplasmic BmaaRS, respectively. Among BmaaRS genes, there were 2 genes encoding mitochondrial BmSerRS, but no genes encoding cytoplasmic BmHisRS and mitochondrial BmGlnRS, BmLysRS, BmGlyRS, and BmThrRS. The functions of these absent genes could be directly replaced by other proteins with similar functions, or might undergo their distinct BmaaRS functions based on the alternative splice of one certain BmaaRS mRNA. Evidence of EST indicated that BmaaRS performed different alternative splicing patterns. The homology comparison and advanced structural analysis of BmaaRS demonstrated the existence of extended domains of BmaaRS. This is because some different BmaaRSs contained similar domain. Moreover, BmaaRSs with similar functions possessed the similar tertiary structure. Phylogenetic analysis revealed that BmaaRS encoded by two various sources of BmaaRS genes. Mitochondrial and cytoplasmic BmaaRS had different origin.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012831 Bombyx A genus of silkworm MOTHS in the family Bombycidae of the order LEPIDOPTERA. The family contains a single species, Bombyx mori from the Greek for silkworm + mulberry tree (on which it feeds). A native of Asia, it is sometimes reared in this country. It has long been raised for its SILK and after centuries of domestication it probably does not exist in nature. It is used extensively in experimental GENETICS. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p519) Bombyx mori,Silkmoths,Silkworms,Silkmoth,Silkworm,Bombyx morus,Bombyxs,mori, Bombyx
D019476 Insect Proteins Proteins found in any species of insect. Insect Protein,Protein, Insect,Proteins, Insect

Related Publications

Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
January 2017, Scientific reports,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
February 2001, The Journal of biological chemistry,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
August 2005, Science in China. Series C, Life sciences,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
June 2010, BMC genomics,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
December 2010, Insect molecular biology,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
July 2021, Journal of fungi (Basel, Switzerland),
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
February 2008, Archives of insect biochemistry and physiology,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
January 1988, The Journal of biological chemistry,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
July 1985, Journal of biochemistry,
Guang-Li Cao, and Ren-Yu Xue, and Yue-Xiong Zhu, and Yu-Hong Wei, and Cheng-Liang Gong
March 2010, BMC genomics,
Copied contents to your clipboard!