Subunit structure and tRNA-binding properties of Bombyx mori Glycyl-tRNA synthetase. 1985

M Kawakami, and K Nishio

Large amounts of glycyl-tRNA synthetase were purified from the posterior silk glands of Bombyx mori. The synthetase was estimated to be a dimer with a molecular weight of 180,000. When the enzyme solution was diluted, the dimer dissociated into monomers which were inactive in tRNA aminoacylation. The aminoacylation was investigated with two isoaccepting tRNAsGly isolated from the posterior silk glands. Transfer RNA1Gly was aminoacylated 2-fold faster than tRNA2Gly. Transfer RNA-binding experiments revealed that tRNA1Gly binds with the enzyme in a molar ratio of 2:1, whereas tRNA2Gly formed a 1:1 complex with the enzyme. Based on these experimental results, we proposed that the Bombyx mori glycyl-tRNA synthetase has two active sites for tRNA aminoacylation and that the number of tRNA molecules bound on the synthetase closely correlates with the velocity of aminoacylation.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D006032 Glycine-tRNA Ligase An enzyme that activates glycine with its specific transfer RNA. EC 6.1.1.14. Glycyl T RNA Synthetase,Gly-tRNA Ligase,Glycyl-tRNA Synthetase,Gly tRNA Ligase,Glycine tRNA Ligase,Glycyl tRNA Synthetase,Ligase, Gly-tRNA,Ligase, Glycine-tRNA,Synthetase, Glycyl-tRNA
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012831 Bombyx A genus of silkworm MOTHS in the family Bombycidae of the order LEPIDOPTERA. The family contains a single species, Bombyx mori from the Greek for silkworm + mulberry tree (on which it feeds). A native of Asia, it is sometimes reared in this country. It has long been raised for its SILK and after centuries of domestication it probably does not exist in nature. It is used extensively in experimental GENETICS. (From Borror et al., An Introduction to the Study of Insects, 4th ed, p519) Bombyx mori,Silkmoths,Silkworms,Silkmoth,Silkworm,Bombyx morus,Bombyxs,mori, Bombyx
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D046249 Transfer RNA Aminoacylation The conversion of uncharged TRANSFER RNA to AMINO ACYL TRNA. Aminoacylation, Transfer RNA,Transfer RNA Charging,tRNA Aminoacylation,tRNA Charging,Amino Acid Activation, Translational,Transfer RNA Acylation,Transfer RNA Amino Acylation,tRNA Acylation,tRNA Amino Acylation,Acylation, Transfer RNA,Acylation, tRNA,Acylations, Transfer RNA,Acylations, tRNA,Amino Acylation, tRNA,Aminoacylation, tRNA,Aminoacylations, Transfer RNA,Aminoacylations, tRNA,RNA Aminoacylations, Transfer,RNA Charging, Transfer,Transfer RNA Acylations,Transfer RNA Aminoacylations,Transfer RNA Chargings,tRNA Acylations,tRNA Aminoacylations,tRNA Chargings
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

M Kawakami, and K Nishio
February 2001, The Journal of biological chemistry,
M Kawakami, and K Nishio
April 1993, The Journal of biological chemistry,
M Kawakami, and K Nishio
April 1984, The Journal of biological chemistry,
M Kawakami, and K Nishio
January 1988, The Journal of biological chemistry,
M Kawakami, and K Nishio
June 1996, Biological chemistry Hoppe-Seyler,
M Kawakami, and K Nishio
December 2009, Yi chuan = Hereditas,
M Kawakami, and K Nishio
December 1990, The Journal of biological chemistry,
M Kawakami, and K Nishio
September 1995, The EMBO journal,
Copied contents to your clipboard!