RHAMM mRNA expression in proliferating and migrating cells of the developing central nervous system. 2010

P Casini, and I Nardi, and M Ori
Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, I-56127 Pisa, Italy.

Extracellular matrix components can influence cell behaviour by modulating a wide variety of events. In particular, the glycosaminoglycan hyaluronan is involved in many processes of the normal and pathological adult cells and it is essential for embryonic development. Two main HA receptors have been characterized in vertebrate developing embryos: CD44 and RHAMM. These receptors display completely different characteristics apart from their ability to bind hyaluronan. RHAMM is still the most mysterious hyaluronan receptor as it can act as cell surface receptor but it can also be localized in the cytoplasm or in the cell nucleus, displaying both hyaluronan dependent and independent functions. In particular, the role of RHAMM during embryogenesis is still largely unclear. We reported a detailed gene expression analysis of RHAMM during Xenopus laevis development comparing its mRNA distribution with that of the hyaluronan synthases and CD44 genes, in order to provide a first insight into the possible role of RHAMM during vertebrate embryogenesis. Our findings point out that RHAMM mRNA displays a specific distribution in proliferating regions of the developing neural tube and retina where synthesis of hyaluronan is not detected. On the contrary, RHAMM expression correlates with the expression of hyaluronan synthase-1 and hyaluronan-receptor CD44 gene expression in migrating cranial neural crest. These results suggest that during the central nervous system development RHAMM could be involved in cell proliferation and migration processes both in a hyaluronan independent and dependent manner.

UI MeSH Term Description Entries
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D000076002 Hyaluronan Synthases Membrane-associated glucuronosyltransferases that catalyze the reaction of UDP-N-acetyl-D-glucosamine and UDP-D-glucuronate to produce HYALURONAN. HYALURONAN SYNTHASE 2 (HAS2) is essential for embryogenesis and its expression by tumor cells is associated with metastasis. HAS1 Protein,HAS2 Protein,HAS3 Protein,Hyaluronan Synthase,Hyaluronan Synthase 1,Hyaluronan Synthase 2,Hyaluronan Synthase 3,Hyaluronan Synthetase,Hyaluronate Synthase,Hyaluronate Synthetase,Hyaluronic Acid Synthetase,hasA Enzyme,3, Hyaluronan Synthase,Protein, HAS3,Synthase 1, Hyaluronan,Synthase 2, Hyaluronan,Synthase 3, Hyaluronan,Synthase, Hyaluronan,Synthase, Hyaluronate,Synthases, Hyaluronan,Synthetase, Hyaluronan,Synthetase, Hyaluronate,Synthetase, Hyaluronic Acid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014453 Glucuronosyltransferase A family of enzymes accepting a wide range of substrates, including phenols, alcohols, amines, and fatty acids. They function as drug-metabolizing enzymes that catalyze the conjugation of UDPglucuronic acid to a variety of endogenous and exogenous compounds. EC 2.4.1.17. Glucuronyltransferase,UDP Glucuronosyltransferase,17 beta-Hydroxysteroid UDP-Glucuronosyltransferase,4-Nitrophenol-UDP-Glucuronosyltransferase,7-Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP-Glucuronosyltransferase,Bilirubin UDP-Glucuronyltransferase,Estrogen UDP-Glucuronosyltransferase,Estrone Glucuronyltransferase,Glucuronic Transferase,Morphine Glucuronyltransferase,UDP Glucuronyl Transferase,UDP-Glucuronic Acid 3-O-beta-D-Galactosyl-D-Galactose Glucuronosyltransferase,p-Nitrophenyl UDP-Glucuronosyltransferase,17 beta Hydroxysteroid UDP Glucuronosyltransferase,4 Nitrophenol UDP Glucuronosyltransferase,7 Hydroxycoumarin UDP Glucuronyltransferase,Androsterone UDP Glucuronosyltransferase,Bilirubin UDP Glucuronyltransferase,Estrogen UDP Glucuronosyltransferase,Glucuronosyltransferase, UDP,Glucuronyl Transferase, UDP,Glucuronyltransferase, 7-Hydroxycoumarin UDP,Glucuronyltransferase, Estrone,Glucuronyltransferase, Morphine,Transferase, Glucuronic,Transferase, UDP Glucuronyl,UDP Glucuronic Acid 3 O beta D Galactosyl D Galactose Glucuronosyltransferase,UDP Glucuronyltransferase, 7-Hydroxycoumarin,UDP-Glucuronosyltransferase, 17 beta-Hydroxysteroid,UDP-Glucuronosyltransferase, Androsterone,UDP-Glucuronosyltransferase, Estrogen,UDP-Glucuronosyltransferase, p-Nitrophenyl,UDP-Glucuronyltransferase, Bilirubin,p Nitrophenyl UDP Glucuronosyltransferase
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular

Related Publications

P Casini, and I Nardi, and M Ori
October 1997, The Journal of comparative neurology,
P Casini, and I Nardi, and M Ori
December 1995, Brain research. Molecular brain research,
P Casini, and I Nardi, and M Ori
January 1991, Virchows Archiv. A, Pathological anatomy and histopathology,
P Casini, and I Nardi, and M Ori
August 1997, Journal of neurochemistry,
P Casini, and I Nardi, and M Ori
January 1983, Cold Spring Harbor symposia on quantitative biology,
P Casini, and I Nardi, and M Ori
February 2002, Journal of neuroimmunology,
P Casini, and I Nardi, and M Ori
October 2011, Neuroscience letters,
P Casini, and I Nardi, and M Ori
April 2001, Journal of neuroscience research,
Copied contents to your clipboard!