Na+ channel beta 1 subunit mRNA expression in developing rat central nervous system. 1995

S Sashihara, and Y Oh, and J A Black, and S G Waxman
Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA.

The sodium channel beta 1 subunit (Na beta 1) is a component of the rat brain voltage-dependent sodium channel. We have used nonradioactive in situ hybridization cytochemical techniques to demonstrate that transcript levels of Na beta 1 are differentially upregulated during postnatal development of several CNS regions, with selective labeling of specific neuronal populations. In the hippocampus, labeling of the pyramidal cell layer (particularly in the CA3 region) and dentate granule cells was initially observed at postnatal day 2 (P2) and P10, respectively, and became progressively more intense with maturation. Labeled cells were first observed in the hilus at P10. In the developing cerebellum, transient labeling was observed in the external granule cell layer beginning at P1 while label increased in the internal granule cell layer up to P21. Purkinje cells showed significant label beginning at P4 and increasing up to P21. Weak signal was seen in neurons of deep nuclei at P1 and increased up to P21. Na beta 1 labeling in the spinal cord was first observed in the ventral horn at P2, and the intensity of labeling in these large motoneurons gradually increased. In addition, there was a ventral-dorsal gradient in this region, with label appearing subsequently in neurons of Rexed laminae IX, VII and VIII, and in the dorsal horn (Rexed laminae I-VI). In these regions, the labeling reached a plateau within the first 2-3 weeks after birth and persisted into the adult rat. The time course and regional heterogeneity of Na beta 1 expression are consistent with the hypothesis that the expression of mature Na+ channels, including Na beta 1, contributes to the development of circuitry that supports complex patterns of electrogenesis.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords
D015222 Sodium Channels Ion channels that specifically allow the passage of SODIUM ions. A variety of specific sodium channel subtypes are involved in serving specialized functions such as neuronal signaling, CARDIAC MUSCLE contraction, and KIDNEY function. Ion Channels, Sodium,Ion Channel, Sodium,Sodium Channel,Sodium Ion Channels,Channel, Sodium,Channel, Sodium Ion,Channels, Sodium,Channels, Sodium Ion,Sodium Ion Channel
D015347 RNA Probes RNA, usually prepared by transcription from cloned DNA, which complements a specific mRNA or DNA and is generally used for studies of virus genes, distribution of specific RNA in tissues and cells, integration of viral DNA into genomes, transcription, etc. Whereas DNA PROBES are preferred for use at a more macroscopic level for detection of the presence of DNA/RNA from specific species or subspecies, RNA probes are preferred for genetic studies. Conventional labels for the RNA probe include radioisotope labels 32P and 125I and the chemical label biotin. RNA probes may be further divided by category into plus-sense RNA probes, minus-sense RNA probes, and antisense RNA probes. Gene Probes, RNA,RNA Probe,Probe, RNA,Probes, RNA,Probes, RNA Gene,RNA Gene Probes

Related Publications

S Sashihara, and Y Oh, and J A Black, and S G Waxman
October 1997, Neuroscience letters,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
October 1994, Hearing research,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
October 1994, Proceedings of the National Academy of Sciences of the United States of America,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
January 1995, Neuroscience letters,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
March 1994, Brain research. Developmental brain research,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
December 1996, Journal of neuroscience research,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
October 1997, The Journal of comparative neurology,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
April 1998, The Journal of comparative neurology,
S Sashihara, and Y Oh, and J A Black, and S G Waxman
March 2005, The Journal of comparative neurology,
Copied contents to your clipboard!