Transient outward potassium current in ICC. 2010

Sean P Parsons, and Jan D Huizinga
Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.

Interstitial cells of Cajal (ICC) are the pacemakers of the gut, initiating slow-wave activity. Several ion channels have been identified that contribute to the depolarization phase of the slow wave. Our aim was to contribute to knowledge about the identity and role of ICC potassium channels in pacemaking. Here we describe a transient outward potassium current in cell-attached patches of ICC. This current was activated almost instantaneously at potentials positive of the resting membrane potential and inactivated as a single exponential or biexponential with time constants that varied widely from patch to patch. Averaged traces gave a biexponential inactivation with time constants of approximately 40 and approximately 500 ms, with no clear voltage dependence. Analysis of single-channel openings and closings indicated a channel conductance of 5 pS and permeability sequence of K(+) (111) > Na(+) (1) > N-methyl-d-glucamine(+) (0.11). The current was completely blocked by 20 microM clotrimazole but was unaffected by 20 microM ketoconazole, 10 microM E4031, or 20 microM clofilium; 5 mM 4-aminopyridine slowed the activation of the current. The transient outward current may be important in moderating the upstroke of the pacemaker potential.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003022 Clotrimazole An imidazole derivative with a broad spectrum of antimycotic activity. It inhibits biosynthesis of the sterol ergostol, an important component of fungal CELL MEMBRANES. Its action leads to increased membrane permeability and apparent disruption of enzyme systems bound to the membrane. Bay b 5097,Canesten,FB b 5097,Kanesten,Klotrimazole,Lotrimin,Mycelex
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Sean P Parsons, and Jan D Huizinga
January 1998, Bulletin de l'Academie nationale de medecine,
Sean P Parsons, and Jan D Huizinga
February 1997, Journal of molecular and cellular cardiology,
Sean P Parsons, and Jan D Huizinga
July 1997, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Sean P Parsons, and Jan D Huizinga
November 1999, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
Sean P Parsons, and Jan D Huizinga
January 2012, The Canadian journal of cardiology,
Sean P Parsons, and Jan D Huizinga
April 2002, American journal of physiology. Heart and circulatory physiology,
Sean P Parsons, and Jan D Huizinga
February 1997, Sheng li xue bao : [Acta physiologica Sinica],
Sean P Parsons, and Jan D Huizinga
July 1981, Neuroscience letters,
Sean P Parsons, and Jan D Huizinga
November 2006, European journal of pharmacology,
Copied contents to your clipboard!