Molecular and clinical heterogeneity in primary hyperoxaluria type 1. 1991

C J Danpure
Biochemical Genetics Research Group, MRC Clinical Research Centre, Harrow, Middlesex, UK.

The autosomal recessive disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). An analysis of liver samples from 59 PH1 patients showed considerable heterogeneity at the enzymic level. Approximately two thirds of patients had zero AGT catalytic activity, whereas the remaining one third had activities that ranged from 3% to 48% of the mean normal level. Two thirds of patients with zero AGT activity also had zero immunoreactive AGT protein, while the other one third, together with all the patients with detectable AGT catalytic activity, had levels of immunoreactive AGT protein that varied from normal to only a few percent of normal. All patients with AGT catalytic activity had their enzyme in the wrong intracellular compartment (ie, mitochondria). On the other hand, in all but one of the patients with immunoreactive AGT protein, but zero catalytic activity, the inactive AGT was correctly located within the peroxisomes. This enzymic heterogeneity was matched by considerable heterogeneity at the clinical level (eg, age at onset, rate of progression, age at renal failure, etc). No simple relationship was found between the level of hepatic AGT and the severity of the disease. It is suggested that a lack of AGT might be responsible for a broader pathological phenotype than classically associated with PH1. The possibility is advanced that some patients with idiopathic oxalate stone disease might owe their predisposition to stone formation to a functional deficiency of AGT.

UI MeSH Term Description Entries
D006960 Hyperoxaluria, Primary A genetic disorder characterized by excretion of large amounts of OXALATES in urine; NEPHROLITHIASIS; NEPHROCALCINOSIS; early onset of RENAL FAILURE; and often a generalized deposit of CALCIUM OXALATE. There are subtypes classified by the enzyme defects in glyoxylate metabolism. Oxaluria, Primary,Primary Hyperoxaluria,Primary Oxalosis,Primary Oxaluria,Hyperoxalurias, Primary,Oxaloses, Primary,Oxalosis, Primary,Oxalurias, Primary,Primary Hyperoxalurias,Primary Oxaloses,Primary Oxalurias
D007223 Infant A child between 1 and 23 months of age. Infants
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008830 Microbodies Electron-dense cytoplasmic particles bounded by a single membrane, such as PEROXISOMES; GLYOXYSOMES; and glycosomes. Glycosomes,Glycosome,Microbody
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths

Related Publications

C J Danpure
January 1994, Nephrologie,
C J Danpure
January 2004, Molecular genetics and metabolism,
C J Danpure
October 2001, Journal of the American Society of Nephrology : JASN,
C J Danpure
May 1991, Pediatric nephrology (Berlin, Germany),
C J Danpure
January 2012, Frontiers in bioscience (Landmark edition),
C J Danpure
June 1999, Kidney international,
C J Danpure
March 2007, Archives of disease in childhood,
C J Danpure
July 1991, Revue medicale de la Suisse romande,
C J Danpure
January 1998, Ryoikibetsu shokogun shirizu,
Copied contents to your clipboard!