Characterization of small ColE1-like plasmids conferring kanamycin resistance in Salmonella enterica subsp. enterica serovars Typhimurium and Newport. 2010

Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
Microbial Food Safety Research Unit, Eastern Regional Research Center, Agricultural Research Service, US Department of Agriculture, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA. chin-yi.chen@ars.usda.gov

Multi-antibiotic resistant (MR) Salmonella enterica serovars Typhimurium and Newport are an increasing concern in human and animal health. Many strains are known to carry antibiotic resistance determinants on multiple plasmids, yet detailed information has been scarce. Three plasmids conferring kanamycin (Kan) resistance were isolated and nucleotide sequences were determined. Two Kan(R) plasmids from Salmonella Newport strains, pSN11/00Kan and pSN02/01Kan, were found to be identical and were 5698bp in size. Plasmid pG7601Kan from Salmonella Typhimurium phage type U302 strain G7601 was 3208bp, and was the same as the previously reported pU302S from another U302 strain G8430. All three plasmids carried identical aph(3')-I genes. The plasmids were ColE1-like, containing RNA I/RNA II and the rom gene. Plasmids pSN11/00Kan and pSN02/01Kan also carried mobilization genes mobC and mobABD, similar to those of the pColK-K235 and pColD-157 plasmids from the colicinogenic Escherichia coli strains. All three plasmids were stable without kanamycin selection for approximately 100 generations.

UI MeSH Term Description Entries
D007613 Kanamycin Resistance Nonsusceptibility of bacteria to the antibiotic KANAMYCIN, which can bind to their 70S ribosomes and cause misreading of messenger RNA.
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D016366 Open Reading Frames A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR). ORFs,Protein Coding Region,Small Open Reading Frame,Small Open Reading Frames,sORF,Unassigned Reading Frame,Unassigned Reading Frames,Unidentified Reading Frame,Coding Region, Protein,Frame, Unidentified Reading,ORF,Open Reading Frame,Protein Coding Regions,Reading Frame, Open,Reading Frame, Unassigned,Reading Frame, Unidentified,Region, Protein Coding,Unidentified Reading Frames
D019779 Salmonella enterica A subgenus of Salmonella containing several medically important serotypes. The habitat for the majority of strains is warm-blooded animals.
D030561 Databases, Nucleic Acid Databases containing information about NUCLEIC ACIDS such as BASE SEQUENCE; SNPS; NUCLEIC ACID CONFORMATION; and other properties. Information about the DNA fragments kept in a GENE LIBRARY or GENOMIC LIBRARY is often maintained in DNA databases. DDBJ,DNA Data Bank of Japan,DNA Data Banks,DNA Databases,Databases, DNA,Databases, DNA Sequence,Databases, Nucleic Acid Sequence,Databases, RNA,Databases, RNA Sequence,EMBL Nucleotide Sequence Database,GenBank,Nucleic Acid Databases,RNA Databases,DNA Databanks,DNA Sequence Databases,European Molecular Biology Laboratory Nucleotide Sequence Database,Nucleic Acid Sequence Databases,RNA Sequence Databases,Bank, DNA Data,Banks, DNA Data,DNA Data Bank,DNA Databank,DNA Database,DNA Sequence Database,Data Bank, DNA,Data Banks, DNA,Databank, DNA,Databanks, DNA,Database, DNA,Database, DNA Sequence,Database, Nucleic Acid,Database, RNA,Database, RNA Sequence,Nucleic Acid Database,RNA Database,RNA Sequence Database,Sequence Database, DNA,Sequence Database, RNA,Sequence Databases, DNA,Sequence Databases, RNA

Related Publications

Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
February 2004, Canadian journal of microbiology,
Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
November 2006, Journal of clinical microbiology,
Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
May 2011, Microbiology (Reading, England),
Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
February 2015, Genome announcements,
Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
December 2022, Pathogens (Basel, Switzerland),
Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
July 2016, Genome announcements,
Chin-Yi Chen, and Terence P Strobaugh, and Jonathan G Frye
April 2004, Epidemiology and infection,
Copied contents to your clipboard!