Blocking of Pseudomonas aeruginosa and Chromobacterium violaceum lectins by diverse mammalian milks. 2010

K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.

Pseudomonas aeruginosa and Chromobacterium violaceum morbid and mortal infections are initiated by bacterial adherence to host-cell receptors via their adhesins, including lectins (which also contribute to bacterial biofilm formation). Pseudomonas aeruginosa produces a galactophilic lectin, PA-IL (LecA), and a fucophilic (Lewis-specific) lectin, PA-IIL (LecB), and C. violaceum produces a fucophilic (H-specific) lectin, CV-IIL. The antibiotic resistance of these bacteria prompted the search for glycosylated receptor-mimicking compounds that would function as glycodecoys for blocking lectin attachment to human cell receptors. Lectins PA-IL and PA-IIL have been shown to be useful for such glycodecoy probing, clearly differentiating between human and cow milks. This article describes their usage, together with CV-IIL and the plant lectin concanavalin A, for comparing the anti-lectin-dependent adhesion potential of diverse mammalian milks. The results show that the diverse milks differ in blocking (hemagglutination inhibition) and differential binding (Western blots) of these lectins. Human milk most strongly inhibited the 3 bacterial lectins (with PA-IIL superiority), followed by alpaca, giraffe, and monkey milks, whereas cow milk was a weak inhibitor. Lectin PA-IL was inhibited strongly by human, followed by alpaca, mare, giraffe, buffalo, and monkey milks, weakly by camel milk, and not at all by rabbit milk. Lectins PA-IIL and CV-IIL were also most sensitive to human milk, followed by alpaca, monkey, giraffe, rabbit, and camel milks but negligibly sensitive to buffalo and mare milks. Plant lectin concanavalinA, which was used as the reference, differed from them in that it was much less sensitive to human milk and was equally as sensitive to cow milk. These results have provided important information on the anti-lectin-dependent adhesion potential of the diverse milks examined. They showed that human followed by alpaca, giraffe, and Rhesus monkey milks efficiently blocked the binding of both the galactophilic and fucophilic (>mannophilic) pathogen lectins. The results also proved the advantage of isolated pathogenic bacterial lectins as superb probes for unveiling bacterial adhesion-blocking glycodecoys. The chosen milks or their polymeric glycans might be implicated in blocking lectin-dependent adhesion of antibiotic-resistant pathogens leading to skin, eye, ear, and gastrointestinal infections.

UI MeSH Term Description Entries
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002861 Chromobacterium A genus of gram-negative, facultatively anaerobic, rod-shaped bacteria occurring in soil and water. Its organisms are generally nonpathogenic, but some species do cause infections of mammals, including humans.
D006384 Hemagglutination The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL). Hemagglutinations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001422 Bacterial Adhesion Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity. Adhesion, Bacterial,Adhesions, Bacterial,Bacterial Adhesions
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal

Related Publications

K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
March 2003, Canadian journal of microbiology,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
February 2012, Nutrition journal,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
January 2017, Pharmacognosy magazine,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
July 2022, Future microbiology,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
February 2024, International microbiology : the official journal of the Spanish Society for Microbiology,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
March 2017, Letters in applied microbiology,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
October 1986, Applied and environmental microbiology,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
October 2019, Bioorganic chemistry,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
September 2021, Archives of microbiology,
K D Zinger-Yosovich, and D Iluz, and D Sudakevitz, and N Gilboa-Garber
January 2011, Advances in experimental medicine and biology,
Copied contents to your clipboard!