Characterization of human deoxycytidine kinase. Correlation with cDNA sequences. 1991

S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
Medical Nobel Institute, Department of Biochemistry, Karolinska Institutet, Stockholm, Sweden.

Existing data on the structure of human deoxycytidine kinase (dCK) diverge. A monomeric 60 kDa form has been isolated and the cloning of a cDNA coding for 626 amino acids corresponding to a 71 kDa protein has been reported. However, pure dCK isolated from leukemic spleen is a dimer of 30 kDa subunits. Amino acid sequences of peptides from digests of this protein are now presented. None of the peptide structures obtained correspond to the cDNA for the 71 kDa protein, but to a cDNA for a 30.5 kDa dCK recently cloned. Furthermore, homology of the peptide sequences od dCK to parts of thymidine kinases and protein-tyrosine kinases are detected.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003842 Deoxycytidine Kinase An enzyme that catalyzes reversibly the phosphorylation of deoxycytidine with the formation of a nucleoside diphosphate and deoxycytidine monophosphate. Cytosine arabinoside can also act as an acceptor. All natural nucleoside triphosphates, except deoxycytidine triphosphate, can act as donors. The enzyme is induced by some viruses, particularly the herpes simplex virus (HERPESVIRUS HOMINIS). EC 2.7.1.74. Kinase, Deoxycytidine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
February 1991, Proceedings of the National Academy of Sciences of the United States of America,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
April 1995, The Journal of clinical investigation,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
January 1985, The International journal of biochemistry,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
January 1993, Advances in enzyme regulation,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
September 1992, Molecular pharmacology,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
September 2001, Cancer letters,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
January 1993, European journal of cancer (Oxford, England : 1990),
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
March 1991, The Journal of biological chemistry,
S Eriksson, and E Cederlund, and T Bergman, and H Jörnvall, and C Bohman
September 1989, The Journal of biological chemistry,
Copied contents to your clipboard!