Synthesis and crosslinking of L-DOPA containing polypeptide vesicles. 2010

Eric P Holowka, and Timothy J Deming
Department of Bioengineering, University of California, Los Angeles, 5121 Engineering 5, Los Angeles, CA 90095, USA.

The synthesis and self-assembly of DOPA containing diblock copolypeptides into spherical vesicles is described. DOPA residues are naturally abundant in mussel adhesive proteins and are responsible for extensive covalent crosslinking of these materials upon oxidation. We found that vesicles could be formed from copolypeptides containing different amounts of DOPA substituted into hydrophobic segments, up to 100% DOPA content. The DOPA containing vesicles were covalently crosslinked in water using an oxidizing agent, in a process similar to the crosslinking of mussel adhesive proteins, which gave vesicles with dramatically improved membrane stability against freeze-drying, organic solvent, osmotic stress and complex media. These materials showed greatly enhanced membrane stability compared to non-crosslinked vesicles and have the advantage that the biomimetic crosslinker DOPA can be incorporated directly into the polypeptide sequence during synthesis.

UI MeSH Term Description Entries
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002214 Capsules Hard or soft soluble containers used for the oral administration of medicine. Capsule,Microcapsule,Microcapsules
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D003692 Delayed-Action Preparations Dosage forms of a drug that act over a period of time by controlled-release processes or technology. Controlled Release Formulation,Controlled-Release Formulation,Controlled-Release Preparation,Delayed-Action Preparation,Depot Preparation,Depot Preparations,Extended Release Formulation,Extended Release Preparation,Prolonged-Action Preparation,Prolonged-Action Preparations,Sustained Release Formulation,Sustained-Release Preparation,Sustained-Release Preparations,Timed-Release Preparation,Timed-Release Preparations,Controlled-Release Formulations,Controlled-Release Preparations,Extended Release Formulations,Extended Release Preparations,Slow Release Formulation,Sustained Release Formulations,Controlled Release Formulations,Controlled Release Preparation,Controlled Release Preparations,Delayed Action Preparation,Delayed Action Preparations,Formulation, Controlled Release,Formulations, Controlled Release,Prolonged Action Preparation,Release Formulation, Controlled,Release Formulations, Controlled,Sustained Release Preparation,Timed Release Preparation,Timed Release Preparations
D016877 Oxidants Electron-accepting molecules in chemical reactions in which electrons are transferred from one molecule to another (OXIDATION-REDUCTION). Oxidant,Oxidizing Agent,Oxidizing Agents,Agent, Oxidizing,Agents, Oxidizing

Related Publications

Eric P Holowka, and Timothy J Deming
April 1974, Journal of pharmaceutical sciences,
Eric P Holowka, and Timothy J Deming
March 2010, Journal of biotechnology,
Eric P Holowka, and Timothy J Deming
July 2007, Ancient science of life,
Eric P Holowka, and Timothy J Deming
August 2007, Cellular and molecular neurobiology,
Eric P Holowka, and Timothy J Deming
January 2012, Topics in current chemistry,
Eric P Holowka, and Timothy J Deming
October 1971, Journal of medicinal chemistry,
Eric P Holowka, and Timothy J Deming
April 1974, Journal of medicinal chemistry,
Eric P Holowka, and Timothy J Deming
September 2000, Nuclear medicine communications,
Eric P Holowka, and Timothy J Deming
October 1980, Biochemical and biophysical research communications,
Eric P Holowka, and Timothy J Deming
January 1972, Chemische Berichte,
Copied contents to your clipboard!