Processing and termination of 23S rRNA-5S rRNA-tRNA(Gly) primary transcripts in Thermus thermophilus HB8. 1991

R K Hartmann, and H Y Toschka, and V A Erdmann
Institut für Biochemie, Freie Universität Berlin, Federal Republic of Germany.

The two 23S rRNA-5S rRNA-tRNAGly operons from the extreme thermophilic eubacterium Thermus thermophilus HB8 were used to characterized the in vivo processing and termination of 23S rRNA-5S rRNA-tRNAGly primary transcripts in this organism by nuclease S1 mapping. A processing site in the pre-23S rRNA 3'-flanking region is located approximately 25 nucleotides upstream of 5S rRNA and precedes a putative 23S-5S rRNA spacer antitermination box A. Cleavage at this site and 5S rRNA 5' end formation were shown to be inseparable events. Termination of transcription at the uridine cluster following the termination-associated hairpin was shown to be efficient but leaky. Subsequent to the operon, a functional promoter was detected whose -35 box coincided with the uridine-rich termination region. The promoter directed synthesis of a beta-galactosidase fusion protein in Escherichia coli.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D010443 Peptide Chain Termination, Translational A process of GENETIC TRANSLATION whereby the terminal amino acid is added to a lengthening polypeptide. This termination process is signaled from the MESSENGER RNA, by one of three termination codons (CODON, TERMINATOR) that immediately follows the last amino acid-specifying CODON. Chain Termination, Peptide, Translational,Protein Biosynthesis Termination,Protein Chain Termination, Translational,Protein Translation Termination,Translation Termination, Genetic,Translation Termination, Protein,Translational Peptide Chain Termination,Translational Termination, Protein,Biosynthesis Termination, Protein,Genetic Translation Termination,Protein Translational Termination,Termination, Genetic Translation,Termination, Protein Biosynthesis,Termination, Protein Translation,Termination, Protein Translational
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012338 RNA, Ribosomal, 23S Constituent of 50S subunit of prokaryotic ribosomes containing about 3200 nucleotides. 23S rRNA is involved in the initiation of polypeptide synthesis. 23S Ribosomal RNA,23S rRNA,RNA, 23S Ribosomal,Ribosomal RNA, 23S,rRNA, 23S
D012341 RNA, Ribosomal, 5S Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis. 5S Ribosomal RNA,5S rRNA,RNA, 5S Ribosomal,Ribosomal RNA, 5S,rRNA, 5S
D012353 RNA, Transfer, Gly A transfer RNA which is specific for carrying glycine to sites on the ribosomes in preparation for protein synthesis. Glycine-Specific tRNA,Transfer RNA, Gly,tRNAGly,Iso tRNA(Gly),Iso-tRNA(Gly),tRNA(Gly),Gly Transfer RNA,Glycine Specific tRNA,RNA, Gly Transfer,tRNA, Glycine-Specific

Related Publications

R K Hartmann, and H Y Toschka, and V A Erdmann
October 1987, Nucleic acids research,
R K Hartmann, and H Y Toschka, and V A Erdmann
May 1986, Journal of microscopy,
R K Hartmann, and H Y Toschka, and V A Erdmann
October 1981, Nucleic acids research,
R K Hartmann, and H Y Toschka, and V A Erdmann
January 1982, Nucleic acids symposium series,
R K Hartmann, and H Y Toschka, and V A Erdmann
September 1993, Nucleic acids research,
R K Hartmann, and H Y Toschka, and V A Erdmann
January 1984, Molekuliarnaia biologiia,
R K Hartmann, and H Y Toschka, and V A Erdmann
January 2000, Nucleic acids symposium series,
R K Hartmann, and H Y Toschka, and V A Erdmann
August 1988, Nucleic acids research,
Copied contents to your clipboard!