Slow motions in lipid bilayers. Direct detection by two-dimensional solid-state deuterium nuclear magnetic resonance. 1991

M Auger, and I C Smith, and H C Jarrell
Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario.

Two-dimensional solid-state 2H NMR spectroscopy of specifically deuteriated lipids is used to detect and to characterize the rate and mode of slow motions in two lipid bilayer systems. Lateral diffusion of lipid molecules over the curved surface of dipalmitoylphosphatidylcholine liposomes can be detected by two-dimensional exchange 2H NMR and it is shown that molecular orientational exchange is complete on the timescale of 100 ms. In contrast, it is shown that for the glycolipid 1,2-di-O-tetradecyl-3-O-Beta-D-glucopyranosyl)-sn-glycerol (beta-DTGL), there is no evidence of a corresponding orientational exchange in the liquid-crystalline phase suggesting that this lipid forms relatively flat bilayers. In the gel phase of hydrated multibilayers of beta-DTGL, a slow (10(3) s(-1)) whole molecule axial motion is demonstrated at 40 degrees C. Comparison of the experimental and simulated 2D-NMR ridge patterns suggests that large angle jumps about the long molecular axis, rather than small step Brownian diffusion, can best account for the 2D-exchange spectra of beta-DTGL in the gel phase. The significance of this technique for the study of dynamics in other biological systems is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D015060 1,2-Dipalmitoylphosphatidylcholine Synthetic phospholipid used in liposomes and lipid bilayers to study biological membranes. It is also a major constituent of PULMONARY SURFACTANTS. Dipalmitoyllecithin,1,2-Dihexadecyl-sn-Glycerophosphocholine,1,2-Dipalmitoyl-Glycerophosphocholine,Dipalmitoyl Phosphatidylcholine,Dipalmitoylglycerophosphocholine,Dipalmitoylphosphatidylcholine,1,2 Dihexadecyl sn Glycerophosphocholine,1,2 Dipalmitoyl Glycerophosphocholine,1,2 Dipalmitoylphosphatidylcholine,Phosphatidylcholine, Dipalmitoyl

Related Publications

M Auger, and I C Smith, and H C Jarrell
January 1981, Methods in enzymology,
M Auger, and I C Smith, and H C Jarrell
January 1989, Methods in enzymology,
M Auger, and I C Smith, and H C Jarrell
February 2021, Solid state nuclear magnetic resonance,
M Auger, and I C Smith, and H C Jarrell
February 1986, Biochemistry,
M Auger, and I C Smith, and H C Jarrell
January 2007, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!