Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance. 2010

Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA.

Nanodiscs are examples of discoidal nanoscale lipid-protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical proteins named membrane scaffolding protein (MSP), ~10 nm in size. Nanodiscs are homogeneous, easily prepared with reproducible success, amenable to preparations with a variety of lipids, and stable over a range of temperatures. Here we present solid-state nuclear magnetic resonance (SSNMR) studies on lyophilized, rehydrated POPC Nanodiscs prepared with uniformly (13)C-, (15)N-labeled MSP1D1 (Δ1-11 truncated MSP). Under these conditions, by SSNMR we directly determine the gel-to-liquid crystal lipid phase transition to be at 3 ± 2 °C. Above this phase transition, the lipid (1)H signals have slow transverse relaxation, enabling filtering experiments as previously demonstrated for lipid vesicles. We incorporate this approach into two- and three-dimensional heteronuclear SSNMR experiments to examine the MSP1D1 residues interfacing with the lipid bilayer. These (1)H-(13)C and (1)H-(13)C-(13)C correlation spectra are used to identify and quantify the number of lipid-correlated and solvent-exposed residues by amino acid type, which furthermore is compared with molecular dynamics studies of MSP1D1 in Nanodiscs. This study demonstrates the utility of SSNMR experiments with Nanodiscs for examining lipid-protein interfaces and has important applications for future structural studies of membrane proteins in physiologically relevant formulations.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009587 Nitrogen Isotopes Stable nitrogen atoms that have the same atomic number as the element nitrogen but differ in atomic weight. N-15 is a stable nitrogen isotope. Nitrogen Isotope,Isotope, Nitrogen,Isotopes, Nitrogen
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002247 Carbon Isotopes Stable carbon atoms that have the same atomic number as the element carbon but differ in atomic weight. C-13 is a stable carbon isotope. Carbon Isotope,Isotope, Carbon,Isotopes, Carbon
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D044366 Transition Temperature The temperature at which a substance changes from one state or conformation of matter to another. Temperature, Transition,Boiling Point Temperature,Freezing Point Temperature,Melting Point Temperature,Boiling Point Temperatures,Freezing Point Temperatures,Melting Point Temperatures,Temperature, Boiling Point,Temperature, Freezing Point,Temperature, Melting Point,Temperatures, Boiling Point,Temperatures, Freezing Point,Temperatures, Melting Point,Temperatures, Transition,Transition Temperatures
D053758 Nanoparticles Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; NANOCAPSULES; METAL NANOPARTICLES; DENDRIMERS, and QUANTUM DOTS. The uses of nanoparticles include DRUG DELIVERY SYSTEMS and cancer targeting and imaging. Nanocrystalline Materials,Nanocrystals,Material, Nanocrystalline,Materials, Nanocrystalline,Nanocrystal,Nanocrystalline Material,Nanoparticle

Related Publications

Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
January 1981, Methods in enzymology,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
September 2001, Biophysical journal,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
January 1991, Biophysical journal,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
January 1986, Methods in enzymology,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
March 2010, The journal of physical chemistry. B,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
February 1986, Biochemistry,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
April 2008, Biochemistry,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
April 1992, Biophysical journal,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
January 1999, Methods in enzymology,
Aleksandra Kijac, and Amy Y Shih, and Andrew J Nieuwkoop, and Klaus Schulten, and Stephen G Sligar, and Chad M Rienstra
June 2002, Analytical chemistry,
Copied contents to your clipboard!