The characterization of SV40-transformed cell lines derived from mouse teratocarcinoma: growth properties and differentiated characteristics. 1977

W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack

Mouse teratocarcinoma cells derived from embryoid bodies of 129SVsl mice were cultured in vitro to permit their differentiation. These cells were then infected with simiam virus 40 (SV40) and 31 cloned cell lines (SVTER) were derived from these cultures. All 31 SVTER cell lines contained the SV40 tumor (T) antigen and grew as permanent lines in culture. Mock-infected embryoid body cultures did not give rise to permanent cell lines. The morphology of each SVTER cell line was distinct and did not change during successive subclonings. The growth properties and tumorigenic potential of all 31 SVTER cell lines were investigated. None of these lines produced tumors in 129SVsl mice. Each cell line was tested for its ability to (1) grow in medium containing 1% serum, (2) plate on cell monolayer, and (3) form clones in methocel suspension. Only three of the SVTER cell lines were transformed with respect to all three of these criteria. Most of these cell lines were minimal transformants. The SVTER cell lines were tested for creatine phospholinase (CPK), an enzyme activity chracteristic of mouse brain and muscle tissue, and the protease, plasminogen activator (PA) which is found in embryoid bodies and several differentiated cell types. Some of the SVTER cell lines contained high levels of CPK, while others had high levels of PA and a third group of cells contained neither enzyme activity. No SVTER cell line was found with high levels of both these enzyme activities. This result suggests that mutually exclusive sets of genes are expressed in these cells as might be expected from the distinct tissue distribution of the two enzyme activities studied. These SVTER cell lines may be useful in reconstructing developmental pathways of differentiating teratomas in vitro.

UI MeSH Term Description Entries
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009374 Neoplasms, Experimental Experimentally induced new abnormal growth of TISSUES in animals to provide models for studying human neoplasms. Experimental Neoplasms,Experimental Neoplasm,Neoplasm, Experimental
D010960 Plasminogen Activators A heterogeneous group of proteolytic enzymes that convert PLASMINOGEN to FIBRINOLYSIN. They are concentrated in the lysosomes of most cells and in the vascular endothelium, particularly in the vessels of the microcirculation. Extrinsic Plasminogen Activators,Plasminogen Activator,Uterine-Tissue Plasminogen Activator,Uterine Tissue Plasminogen Activator
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003402 Creatine Kinase A transferase that catalyzes formation of PHOSPHOCREATINE from ATP + CREATINE. The reaction stores ATP energy as phosphocreatine. Three cytoplasmic ISOENZYMES have been identified in human tissues: the MM type from SKELETAL MUSCLE, the MB type from myocardial tissue and the BB type from nervous tissue as well as a mitochondrial isoenzyme. Macro-creatine kinase refers to creatine kinase complexed with other serum proteins. Creatine Phosphokinase,ADP Phosphocreatine Phosphotransferase,ATP Creatine Phosphotransferase,Macro-Creatine Kinase,Creatine Phosphotransferase, ATP,Kinase, Creatine,Macro Creatine Kinase,Phosphocreatine Phosphotransferase, ADP,Phosphokinase, Creatine,Phosphotransferase, ADP Phosphocreatine,Phosphotransferase, ATP Creatine
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor
D013539 Simian virus 40 A species of POLYOMAVIRUS originally isolated from Rhesus monkey kidney tissue. It produces malignancy in human and newborn hamster kidney cell cultures. SV40 Virus,Vacuolating Agent,Polyomavirus macacae,SV 40 Virus,SV 40 Viruses,SV40 Viruses,Vacuolating Agents

Related Publications

W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
August 1980, Journal of cellular physiology,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
August 1973, Journal of cellular physiology,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
February 1975, Journal of cellular physiology,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
August 1974, Journal of cellular physiology,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
January 1993, The Journal of steroid biochemistry and molecular biology,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
January 1975, Intervirology,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
January 1984, Cancer research,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
August 1981, Cell,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
May 1982, Cancer research,
W Topp, and J D Hall, and D Rifkin, and A J Levine, and R Pollack
October 1981, Virology,
Copied contents to your clipboard!