Characterization of human transforming genes from chemically transformed, teratocarcinoma, and pancreatic carcinoma cell lines. 1984

C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude

Dominant transforming genes that were transferred to mouse NIH3T3 cells by cellular DNAs prepared from a chemically transformed human cell line (MNNG-HOS), a human teratocarcinoma cell line (PA1), and a human pancreatic carcinoma cell line (A1165) were characterized (a) analyzing the repetitive human DNA sequences that were associated with the transforming gene and (b) determining their relationship to the oncogenes of the Harvey (rasH) and Kirsten (rasK) sarcoma viruses and to the human neuroblastoma transforming gene (rasN). The results show that the transforming gene activated in the teratocarcinoma cell line is identical to the neuroblastoma transforming gene and that the transforming gene of the pancreatic carcinoma cell line is a human homologue of rasK. In contrast, the transforming gene activated in the chemically transformed human cell line showed no detectable homology to rasK, rasH, and rasN.

UI MeSH Term Description Entries
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D007890 Leiomyosarcoma A sarcoma containing large spindle cells of smooth muscle. Although it rarely occurs in soft tissue, it is common in the viscera. It is the most common soft tissue sarcoma of the gastrointestinal tract and uterus. The median age of patients is 60 years. (From Dorland, 27th ed; Holland et al., Cancer Medicine, 3d ed, p1865) Leiomyosarcoma, Epithelioid,Leiomyosarcoma, Myxoid,Epithelioid Leiomyosarcoma,Epithelioid Leiomyosarcomas,Leiomyosarcomas,Leiomyosarcomas, Epithelioid,Leiomyosarcomas, Myxoid,Myxoid Leiomyosarcoma,Myxoid Leiomyosarcomas
D008769 Methylnitronitrosoguanidine A nitrosoguanidine derivative with potent mutagenic and carcinogenic properties. Methylnitrosonitroguanidine,Nitrosomethylnitroguanidine,Nitrosonitromethylguanidine,MNNG,N-Methyl-N'-nitro-N-nitrosoguanidine,N Methyl N' nitro N nitrosoguanidine
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010190 Pancreatic Neoplasms Tumors or cancer of the PANCREAS. Depending on the types of ISLET CELLS present in the tumors, various hormones can be secreted: GLUCAGON from PANCREATIC ALPHA CELLS; INSULIN from PANCREATIC BETA CELLS; and SOMATOSTATIN from the SOMATOSTATIN-SECRETING CELLS. Most are malignant except the insulin-producing tumors (INSULINOMA). Cancer of Pancreas,Pancreatic Cancer,Cancer of the Pancreas,Neoplasms, Pancreatic,Pancreas Cancer,Pancreas Neoplasms,Pancreatic Acinar Carcinoma,Pancreatic Carcinoma,Acinar Carcinoma, Pancreatic,Acinar Carcinomas, Pancreatic,Cancer, Pancreas,Cancer, Pancreatic,Cancers, Pancreas,Cancers, Pancreatic,Carcinoma, Pancreatic,Carcinoma, Pancreatic Acinar,Carcinomas, Pancreatic,Carcinomas, Pancreatic Acinar,Neoplasm, Pancreas,Neoplasm, Pancreatic,Neoplasms, Pancreas,Pancreas Cancers,Pancreas Neoplasm,Pancreatic Acinar Carcinomas,Pancreatic Cancers,Pancreatic Carcinomas,Pancreatic Neoplasm
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
February 1987, In vitro cellular & developmental biology : journal of the Tissue Culture Association,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
November 1977, Journal of cellular physiology,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
July 2015, Anticancer research,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
April 1980, Biochemistry,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
March 1981, International journal of andrology,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
February 1999, Cancer,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
August 1980, Journal of cellular physiology,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
July 1995, International journal of cancer,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
October 1990, International journal of andrology,
C S Cooper, and D G Blair, and M K Oskarsson, and M A Tainsky, and L A Eader, and G F Vande Woude
May 1982, Cancer research,
Copied contents to your clipboard!