Angiotensin-(1-7) and angiotension II in the rostral ventrolateral medulla modulate the cardiac sympathetic afferent reflex and sympathetic activity in rats. 2010

Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
Department of Physiology, Nanjing Medical University, Nanjing 210029, China.

The rostral ventrolateral medulla (RVLM) plays a pivotal role in regulating sympathetic vasomotor activity. The cardiac sympathetic afferent reflex (CSAR) contributes to the enhanced sympathetic outflow in chronic heart failure and hypertension. The aim of the present study was to determine whether angiotensin (Ang) II and Ang-(1-7) in the RVLM modulate the CSAR and sympathetic activity. Bilateral sinoaortic denervation and vagotomy were carried out in anesthetized rats. The CSAR was evaluated as the renal sympathetic nerve activity (RSNA) response to epicardial application of capsaicin. The effects of bilateral microinjection of Ang II, Ang-(1-7), the AT(1) receptor antagonist losartan or the Mas receptor antagonist D: -alanine-Ang-(1-7) (A-779) into the RVLM were determined. Either Ang II or Ang-(1-7) enhanced the CSAR as well as increased RSNA and mean arterial pressure (MAP) in a dose-dependent manner. Pretreatment with losartan but not the A-779 abolished the effects of Ang II, while A-779 but not the losartan eliminated the effects of Ang-(1-7). The RVLM microinjection of losartan alone had no direct effect on the CSAR, RSNA, and MAP, but A-779 alone attenuated the CSAR and decreased RSNA and MAP. These results indicate that Ang-(1-7) is as effective as Ang II in sensitizing the CSAR and increasing sympathetic outflow. In contrast to Ang II, the effects of Ang-(1-7) are not mediated by AT(1) receptors but by Mas receptors. Mas receptors, but not the AT(1) receptors, in the RVLM are involved in the tonic control of the CSAR.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D000803 Angiotensin I A decapeptide that is cleaved from precursor angiotensinogen by RENIN. Angiotensin I has limited biological activity. It is converted to angiotensin II, a potent vasoconstrictor, after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME.
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000959 Antihypertensive Agents Drugs used in the treatment of acute or chronic vascular HYPERTENSION regardless of pharmacological mechanism. Among the antihypertensive agents are DIURETICS; (especially DIURETICS, THIAZIDE); ADRENERGIC BETA-ANTAGONISTS; ADRENERGIC ALPHA-ANTAGONISTS; ANGIOTENSIN-CONVERTING ENZYME INHIBITORS; CALCIUM CHANNEL BLOCKERS; GANGLIONIC BLOCKERS; and VASODILATOR AGENTS. Anti-Hypertensive,Anti-Hypertensive Agent,Anti-Hypertensive Drug,Antihypertensive,Antihypertensive Agent,Antihypertensive Drug,Anti-Hypertensive Agents,Anti-Hypertensive Drugs,Anti-Hypertensives,Antihypertensive Drugs,Antihypertensives,Agent, Anti-Hypertensive,Agent, Antihypertensive,Agents, Anti-Hypertensive,Agents, Antihypertensive,Anti Hypertensive,Anti Hypertensive Agent,Anti Hypertensive Agents,Anti Hypertensive Drug,Anti Hypertensive Drugs,Anti Hypertensives,Drug, Anti-Hypertensive,Drug, Antihypertensive,Drugs, Anti-Hypertensive,Drugs, Antihypertensive
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017704 Baroreflex A response by the BARORECEPTORS to increased BLOOD PRESSURE. Increased pressure stretches BLOOD VESSELS which activates the baroreceptors in the vessel walls. The net response of the CENTRAL NERVOUS SYSTEM is a reduction of central sympathetic outflow. This reduces blood pressure both by decreasing peripheral VASCULAR RESISTANCE and by lowering CARDIAC OUTPUT. Because the baroreceptors are tonically active, the baroreflex can compensate rapidly for both increases and decreases in blood pressure. Reflex, Baroreceptor,Baroreceptor Reflex,Baroreceptor Reflexes,Baroreflexes,Reflexes, Baroreceptor

Related Publications

Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
October 2012, Neuroscience,
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
November 2015, Journal of the American Society of Hypertension : JASH,
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
December 2009, Acta physiologica (Oxford, England),
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
April 2013, Hypertension (Dallas, Tex. : 1979),
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
January 2012, PloS one,
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
February 2004, Sheng li xue bao : [Acta physiologica Sinica],
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
January 2012, PloS one,
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
January 2013, PloS one,
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
May 2002, Journal of applied physiology (Bethesda, Md. : 1985),
Li-Min Zhou, and Zhen Shi, and Juan Gao, and Ying Han, and Ning Yuan, and Xing-Ya Gao, and Guo-Qing Zhu
August 2003, Autonomic neuroscience : basic & clinical,
Copied contents to your clipboard!