Immortalization of bovine mammary epithelial cells alone by human telomerase reverse transcriptase. 2010

Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
National Key Laboratory for Agrobiotechnology, College of biological sciences, China Agricultural University, Yuanmingyuan Xi lu, Haidian District, Beijing 100193, People's Republic of China.

Immortal bovine mammary epithelial cell lines are useful for providing an efficient indicator for transgene expression and for the technological improvement of genetic modification. The preparation of hTERT (human telomerase reverse transcriptase)-mediated immortalized MECs (mammary epithelial cells) requires a down-regulation of p16(INK4a). Here, we report the establishment of two immortal bovine MEC lines by expression of hTERT gene alone under serum-containing culture conditions. This two cell lines maintain the general characteristics of MECs and have been stably passed more than 200 generations accompanying telomere extension, and were identified as non-malignant transformation. Investigation on transcriptional profile showed a similar down-regulation in both p16(INK4a) and p53. By comparing with non-immortal hTERT-positive MECs, we speculated that there are some spontaneous p16(INK4a)-reduced cells under normal culture conditions and the immortalization required for a co-ordinate repression of p53 and p16(INK4a) signalling pathways. Interestingly, two immortal cell lines showed a significant distinction in proliferation rate, implying that other mechanisms might be involved in proliferation control.

UI MeSH Term Description Entries
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D016159 Tumor Suppressor Protein p53 Nuclear phosphoprotein encoded by the p53 gene (GENES, P53) whose normal function is to control CELL PROLIFERATION and APOPTOSIS. A mutant or absent p53 protein has been found in LEUKEMIA; OSTEOSARCOMA; LUNG CANCER; and COLORECTAL CANCER. p53 Tumor Suppressor Protein,Cellular Tumor Antigen p53,Oncoprotein p53,TP53 Protein,TRP53 Protein,p53 Antigen,pp53 Phosphoprotein,Phosphoprotein, pp53

Related Publications

Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
March 2004, Biochemical and biophysical research communications,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
December 2007, Molecules and cells,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
May 2008, Cancer research,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
June 2021, Biomedicines,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
August 2016, Biotechnology letters,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
October 2000, Journal of immunology (Baltimore, Md. : 1950),
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
August 2004, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
November 2011, Current protocols in immunology,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
September 2006, Breast cancer research and treatment,
Chen-Fu Zhao, and Hong-Yu Hu, and Lu Meng, and Qian-Qian Li, and Ai-Xing Lin
April 2011, Development, growth & differentiation,
Copied contents to your clipboard!