Mechanisms of joint neurotoxicity of n-hexane, methyl isobutyl ketone and O-ethyl O-4-nitrophenyl phenylphosphonothioate in hens. 1991

M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
Department of Pharmacology, Duke University Medical Center, Durham, North Carolina.

The joint neurotoxic action of simultaneous exposure to vapors of n-hexane and methyl iso-butyl ketone (MiBK) and dermally applied O-ethyl O-nitrophenyl phenylphosphonothioate (EPN) was studied in groups of five adult hens. Four groups of hens were concurrently exposed to a dermal 2.5 mg/kg of EPN, 1000 ppm of n-hexane and 100, 250, 500 or 1000 ppm of MiBK. Two groups were each exposed to binary mixtures of a dermal dose of 2.5 mg/kg of EPN and 250 ppm of MiBK or 1000 ppm of n-hexane. Another three groups of hens were exposed to either 250 ppm of MiBK, 1000 ppm of n-hexane or a dermal dose of 2.5 mg/kg of EPN. A Group of hens was kept untreated. All hens were terminated after 30 days of treatment. Hens exposed to MiBK or n-hexane vapor did not exhibit any toxicity signs. In contrast, hens treated with EPN alone or in combination with n-hexane and/or MiBK developed acute cholinergic and delayed neurotoxicity signs. Hen brain acetylcholinesterase and neurotoxic esterase activities were inhibited in hens treated concurrently with EPN, n-hexane and MiBK. MiBK alone or in combination with EPN and n-hexane induced liver microsomal cytochrome P-450 content and phenobarbital-inducible cytochrome P-450 enzyme activities. Microsomes from hens treated with EPN, n-hexane, MiBK or mixtures of EPN, n-hexane and MiBK significantly enhanced the biotransformation of EPN to the more neurotoxic oxidation metabolite O-ethyl O-4-nitrophenyl phenylphosphonate.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008742 Methyl n-Butyl Ketone An industrial solvent which causes nervous system degeneration. MBK is an acronym often used to refer to it. 2-Hexanone,Butylmethyl Ketone,Hexan-2-one,2 Hexanone,Hexan 2 one,Ketone, Butylmethyl,Ketone, Methyl n-Butyl,Methyl n Butyl Ketone,n-Butyl Ketone, Methyl
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D009420 Nervous System The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed) Nervous Systems,System, Nervous,Systems, Nervous
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme

Related Publications

M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
September 1978, Toxicology and applied pharmacology,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
January 1983, Neurotoxicology,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
March 1983, Toxicology and applied pharmacology,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
March 1979, Toxicology and applied pharmacology,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
August 1983, Toxicology and applied pharmacology,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
January 1988, Sangyo igaku. Japanese journal of industrial health,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
December 1993, Environmental health perspectives,
M B Abou-Donia, and Z H Hu, and D M Lapadula, and R P Gupta
June 1982, Biochemical pharmacology,
Copied contents to your clipboard!