Single K+ channel properties in cultured mouse Schwann cells: conductance and kinetics. 1991

A Verkhratsky, and D Hoppe, and H Kettenmann
Department of Neurobiology, University of Heidelberg, West Germany.

Cultured Schwann cells are characterized by a strong outward rectification of the membrane; the threshold of the outward currents is close to the resting membrane potential of about -50 mV (Gray et al.: In Ritchie, Keynes (eds): Ion Channels in Neural Membranes. New York: Alan R. Liss, Inc., pp 145-157, 1986). These outward currents show up a heterogeneity among the cultured Schwann cells: some cells displayed inactivating, others non-inactivating outward currents (Hoppe et al.: Pflügers Arch 415:22-28, 1989). In this study we characterized the single channel currents using the patch-clamp technique in the intact patch recording configuration. The conductance of all recorded channels was 10-12 pS (5.6 mM [K+]o). These channels were K+ selective since changes in extracellular [K+] resulted in changes of the reversal potential as predicted for an exclusively K+ selective pore. The reversal potentials also predicted an intracellular [K+] of 60 mM indicating that the K+ equilibrium potential is slightly negative to the membrane potential. Analysis of the kinetic behavior of the channels resolved two different types of behaviour: 40% inactivated during a depolarizing voltage step, the others showing no sign of inactivation. The analysis of open probability and gating properties in the steady state showed up more differences between these two channel types: mean open probability peaked at about 10 mV for inactivating channels, while it continuously increased for non-inactivating channels. The inactivation time constants of averaged single channel and whole cell currents were similar and showed both a similar voltage dependency. We conclude that cultured Schwann cells express either two types of K+ channels with similar conductance or a channel which can acquire two functional states and that these channels can account for the different types of K+ currents observed in these cells.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011336 Probability The study of chance processes or the relative frequency characterizing a chance process. Probabilities
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation

Related Publications

A Verkhratsky, and D Hoppe, and H Kettenmann
September 1999, The Journal of physiology,
A Verkhratsky, and D Hoppe, and H Kettenmann
May 1997, Journal of neuroscience research,
A Verkhratsky, and D Hoppe, and H Kettenmann
October 1983, Experimental cell research,
A Verkhratsky, and D Hoppe, and H Kettenmann
May 1988, Proceedings of the Royal Society of London. Series B, Biological sciences,
A Verkhratsky, and D Hoppe, and H Kettenmann
March 1997, The Journal of physiology,
A Verkhratsky, and D Hoppe, and H Kettenmann
June 1984, Proceedings of the Royal Society of London. Series B, Biological sciences,
A Verkhratsky, and D Hoppe, and H Kettenmann
October 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
A Verkhratsky, and D Hoppe, and H Kettenmann
October 1969, The American journal of physiology,
A Verkhratsky, and D Hoppe, and H Kettenmann
February 1991, The Journal of physiology,
Copied contents to your clipboard!