Postnatal expression of the canalicular bile acid transport system of rat liver. 1991

D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06510.

Canalicular plasma membrane (CPM) vesicles prepared by a Ca2+ precipitation method from developing (7 and 14 days old) and adult rat liver were used to directly examine the postnatal ontogenesis of taurocholate (TC) transport. The initial rate of 50 microM TC uptake by vesicles derived from 14-day-old and adult but not 7-day-old animals was markedly inhibited by the anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS-sensitive TC uptake was 21.6 +/- 5.6 (SE) at 14 days compared with 58.1 +/- 8.1 pmol.mg protein-1.5 s-1 in adults (P less than or equal to 0.01). Kinetic studies were performed by preloading these predominantly "right-side out" vesicles with TC (25-800 microM) and measuring the initial rate (5 s) of efflux into bile salt-free medium. Computer analysis of the DIDS-sensitive portion of efflux revealed saturable kinetics with a similar Vmax (2.72 +/- 0.36 vs. 1.97 +/- 0.17 nmol.mg protein-1.min-1; P = NS) but a threefold higher Km (0.35 +/- 0.09 vs. 0.11 +/- 0.02 mM; P less than or equal to 0.05) in 14 day vs. adult CPM vesicles. In contrast, efflux from 7 day CPM vesicles increased linearly with increasing concentrations of TC and was not inhibited by DIDS. Immunoblots of canalicular membranes, probed with an antibody against the 100-kDa bile acid transport protein, showed that the amount of immunoreactive carrier protein in the membranes of 14-day-old and adult rats was similar but was only 37% of the adult level at 7 days of age.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
March 1987, The Biochemical journal,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
August 1988, Proceedings of the National Academy of Sciences of the United States of America,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
January 1993, The Journal of biological chemistry,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
August 1987, The Journal of biological chemistry,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
May 1990, The American journal of physiology,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
September 1995, The Journal of biological chemistry,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
March 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
May 1992, The Biochemical journal,
D A Novak, and C J Sippel, and M Ananthanarayanan, and F J Suchy
March 1983, The American journal of physiology,
Copied contents to your clipboard!