Differential ontogenic regulation of basolateral and canalicular bile acid transport proteins in rat liver. 1995

W Hardikar, and M Ananthanarayanan, and F J Suchy
Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.

The hepatic transport systems mediating bile acid uptake and excretion undergo independent, stage-specific expression during development in the rat. In this study, the mechanisms underlying ontogenic regulation of both the Na(+)-dependent basolateral bile acid transporter and canalicular bile acid transporter/ecto-ATPase were examined. Steady state mRNA levels for the basolateral transporter were less than 20% of adult values prior to birth, increased to 35% on the first postnatal day, and reached adult levels by 1 week of age. This was paralleled by transcription rates, which were low prior to birth, reached 47% by day 1, and were maximal by 1 week of age. Steady state mRNA levels for ecto-ATPase were 12% of adult values prior to birth and showed a 2-fold increase by the first day of life. Thereafter, there was a gradual increase in mRNA for this transporter, with adult levels being reached at 4 weeks of age. Transcription rates paralleled this increment, although adult levels were reached earlier. Surprisingly, for both transporters, the full complement of protein was present well before adult levels of mRNA were reached. The basolateral protein was expressed at 82% of adult levels on the first day of life but was of lower apparent molecular mass (39 kDa), a difference that persisted until 4 weeks of age. N-Glycanase digestion suggested that this difference could be fully accounted for by N-linked glycosylation. The ecto-ATPase protein was present at 33% of adult levels prior to birth, 77% by 1 day, and 84% of adult levels by 1 week of age. Unlike the basolateral transporter, the apparent molecular weight of this protein did not change during development. In summary, the ontogeny of bile acid transporters on the plasma membrane of the hepatocyte is complex and appears to be regulated at transcriptional, translational, and post-translational levels.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006913 Hydroxysteroid Dehydrogenases Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-. Hydroxysteroid Dehydrogenase,Dehydrogenase, Hydroxysteroid,Dehydrogenases, Hydroxysteroid
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

W Hardikar, and M Ananthanarayanan, and F J Suchy
March 1987, The Biochemical journal,
W Hardikar, and M Ananthanarayanan, and F J Suchy
May 1991, The American journal of physiology,
W Hardikar, and M Ananthanarayanan, and F J Suchy
May 1990, The American journal of physiology,
W Hardikar, and M Ananthanarayanan, and F J Suchy
January 1993, The Journal of biological chemistry,
W Hardikar, and M Ananthanarayanan, and F J Suchy
August 1991, Proceedings of the National Academy of Sciences of the United States of America,
W Hardikar, and M Ananthanarayanan, and F J Suchy
May 1990, The Journal of biological chemistry,
W Hardikar, and M Ananthanarayanan, and F J Suchy
December 1999, Gastroenterology,
W Hardikar, and M Ananthanarayanan, and F J Suchy
March 1983, The American journal of physiology,
W Hardikar, and M Ananthanarayanan, and F J Suchy
January 2011, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
W Hardikar, and M Ananthanarayanan, and F J Suchy
May 1992, The Biochemical journal,
Copied contents to your clipboard!