Human acid maltase-deficient myogenic cell transformation with origin-defective SV40: characterization of a cloned line. 1991

F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
Third Department of Internal Medicine, Kagoshima University School of Medicine, Japan.

A clonal human skeletal muscle cell line showing acid maltase deficiency (AMD) was established through the transfection of origin-defective SV40 DNA. The low acid alpha-glucosidase activity and glycogenosomes in this clone corresponded to AMD. This clone, in spite of loading glycogenososmes, was competent not only as to proliferation without contact inhibition but also as to myogenic differentiation to some extent. Dexamethasone promoted the formation by the transformant of multinucleated myotubes, which expressed acetylcholine receptors. The existence of glycogenosomes did not seem to affect the proliferation or differentiation of myoblasts. The aberrant acid alpha-glucosidase expressed in the transformed myogenic clone was shown to be biochemically identical to that in AMD fibroblasts. This transformant should be of great value for investigating the pathogenesis of AMD because of the possibility of supplying semi-permanently a uniform myogenic cell line expressing AMD.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D005087 Glucan 1,4-alpha-Glucosidase An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4. 1,4-alpha-Glucosidase, Exo,Amyloglucosidase,Exo-1,4-alpha-Glucosidase,Glucoamylase,gamma-Amylase,Glucoamylase G1,Glucoamylase G2,1,4-alpha-Glucosidase, Glucan,Exo 1,4 alpha Glucosidase,Glucan 1,4 alpha Glucosidase,gamma Amylase
D005260 Female Females
D006009 Glycogen Storage Disease Type II An autosomal recessively inherited glycogen storage disease caused by GLUCAN 1,4-ALPHA-GLUCOSIDASE deficiency. Large amounts of GLYCOGEN accumulate in the LYSOSOMES of skeletal muscle (MUSCLE, SKELETAL); HEART; LIVER; SPINAL CORD; and BRAIN. Three forms have been described: infantile, childhood, and adult. The infantile form is fatal in infancy and presents with hypotonia and a hypertrophic cardiomyopathy (CARDIOMYOPATHY, HYPERTROPHIC). The childhood form usually presents in the second year of life with proximal weakness and respiratory symptoms. The adult form consists of a slowly progressive proximal myopathy. (From Muscle Nerve 1995;3:S61-9; Menkes, Textbook of Child Neurology, 5th ed, pp73-4) Acid Maltase Deficiency Disease,Generalized Glycogenosis,Glycogenosis 2,Lysosomal alpha-1,4-Glucosidase Deficiency Disease,Pompe Disease,Acid Alpha-Glucosidase Deficiency,Acid Maltase Deficiency,Adult Glycogen Storage Disease Type II,Alpha-1,4-Glucosidase Deficiency,Deficiency Disease, Acid Maltase,Deficiency Disease, Lysosomal alpha-1,4-Glucosidase,Deficiency of Alpha-Glucosidase,GAA Deficiency,GSD II,GSD2,Glycogen Storage Disease II,Glycogen Storage Disease Type 2,Glycogen Storage Disease Type II, Adult,Glycogen Storage Disease Type II, Infantile,Glycogen Storage Disease Type II, Juvenile,Glycogenosis Type II,Infantile Glycogen Storage Disease Type II,Juvenile Glycogen Storage Disease Type II,Pompe's Disease,Acid Alpha Glucosidase Deficiency,Acid Alpha-Glucosidase Deficiencies,Acid Maltase Deficiencies,Alpha 1,4 Glucosidase Deficiency,Alpha-1,4-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies,Alpha-Glucosidase Deficiencies, Acid,Alpha-Glucosidase Deficiency,Alpha-Glucosidase Deficiency, Acid,Deficiencies, Acid Alpha-Glucosidase,Deficiencies, Acid Maltase,Deficiencies, Alpha-1,4-Glucosidase,Deficiencies, GAA,Deficiency of Alpha Glucosidase,Deficiency, Acid Alpha-Glucosidase,Deficiency, Acid Maltase,Deficiency, Alpha-1,4-Glucosidase,Deficiency, GAA,Disease, Pompe,Disease, Pompe's,GAA Deficiencies,GSD2s,Generalized Glycogenoses,Glycogenoses, Generalized,Glycogenosis, Generalized,Lysosomal alpha 1,4 Glucosidase Deficiency Disease,Maltase Deficiencies, Acid,Pompes Disease,Type II, Glycogenosis,Type IIs, Glycogenosis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000293 Adolescent A person 13 to 18 years of age. Adolescence,Youth,Adolescents,Adolescents, Female,Adolescents, Male,Teenagers,Teens,Adolescent, Female,Adolescent, Male,Female Adolescent,Female Adolescents,Male Adolescent,Male Adolescents,Teen,Teenager,Youths
D000520 alpha-Glucosidases Enzymes that catalyze the exohydrolysis of 1,4-alpha-glucosidic linkages with release of alpha-glucose. Deficiency of alpha-1,4-glucosidase may cause GLYCOGEN STORAGE DISEASE TYPE II. Acid Maltase,Lysosomal alpha-Glucosidase,Maltase,Maltases,Maltase-Glucoamylase,Neutral Maltase,Neutral alpha-Glucosidase,alpha-Glucosidase,Lysosomal alpha Glucosidase,Maltase Glucoamylase,Neutral alpha Glucosidase,alpha Glucosidase,alpha Glucosidases,alpha-Glucosidase, Lysosomal,alpha-Glucosidase, Neutral

Related Publications

F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
February 1988, Journal of the neurological sciences,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
May 1997, The Tohoku journal of experimental medicine,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
February 1999, The American journal of physiology,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
January 1980, Cold Spring Harbor symposia on quantitative biology,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
February 1978, In vitro,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
June 1984, Experimental neurology,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
January 2012, Experimental cell research,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
February 1965, Journal of cellular and comparative physiology,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
June 1985, [Osaka Daigaku shigaku zasshi] The journal of Osaka University Dental Society,
F Usuki, and I Higuchi, and Y Soejima, and M Hattori, and I Maruyama, and M Osame
August 1974, Virology,
Copied contents to your clipboard!