Refined structure of porcine pepsinogen at 1.8 A resolution. 1991

A R Sielecki, and M Fujinaga, and R J Read, and M N James
Department of Biochemistry, University of Alberta, Edmonton, Canada.

The molecular structure of porcine pepsinogen at 1.8 A resolution has been determined by a combination of molecular replacement and multiple isomorphous phasing techniques. The resulting structure was refined by restrained-parameter least-squares methods. The final R factor [formula: see text] is 0.164 for 32,264 reflections with I greater than or equal to sigma (I) in the resolution range of 8.0 to 1.8 A. The model consists of 2785 protein atoms in 370 residues, a phosphoryl group on Ser68 and 238 ordered water molecules. The resulting molecular stereochemistry is consistent with a well-refined crystal structure with co-ordinate accuracy in the range of 0.10 to 0.15 A for the well-ordered regions of the molecule (B less than 15 A2). For the enzyme portion of the zymogen, the root-mean-square difference in C alpha atom co-ordinates with the refined porcine pepsin structure is 0.90 A (284 common atoms) and with the C alpha atoms of penicillopepsin it is 1.63 A (275 common atoms). The additional 44 N-terminal amino acids of the prosegment (Leu1p to Leu44p, using the letter p after the residue number to distinguish the residues of the prosegment) adopt a relatively compact structure consisting of a long beta-strand followed by two approximately orthogonal alpha-helices and a short 3(10)-helix. Intimate contacts, both electrostatic and hydrophobic interactions, are made with residues in the pepsin active site. The N-terminal beta-strand, Leu1p to Leu6p, forms part of the six-stranded beta-sheet common to the aspartic proteinases. In the zymogen the first 13 residues of pepsin, Ile1 to Glu13, adopt a completely different conformation from that of the mature enzyme. The C alpha atom of Ile1 must move approximately 44 A in going from its position in the inactive zymogen to its observed position in active pepsin. Electrostatic interactions of Lys36pN and hydrogen-bonding interactions of Tyr37pOH, and Tyr90H with the two catalytic aspartate groups, Asp32 and Asp215, prevent substrate access to the active site of the zymogen. We have made a detailed comparison of the mammalian pepsinogen fold with the fungal aspartic proteinase fold of penicillopepsin, used for the molecular replacement solution. A structurally derived alignment of the two sequences is presented.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010434 Pepsin A Formed from pig pepsinogen by cleavage of one peptide bond. The enzyme is a single polypeptide chain and is inhibited by methyl 2-diaazoacetamidohexanoate. It cleaves peptides preferentially at the carbonyl linkages of phenylalanine or leucine and acts as the principal digestive enzyme of gastric juice. Pepsin,Pepsin 1,Pepsin 3
D010435 Pepsinogens Proenzymes secreted by chief cells, mucous neck cells, and pyloric gland cells, which are converted into pepsin in the presence of gastric acid or pepsin itself. (Dorland, 28th ed) In humans there are 2 related pepsinogen systems: PEPSINOGEN A (formerly pepsinogen I or pepsinogen) and PEPSINOGEN C (formerly pepsinogen II or progastricsin). Pepsinogen B is the name of a pepsinogen from pigs. Pepsinogen B
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D014961 X-Ray Diffraction The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Xray Diffraction,Diffraction, X-Ray,Diffraction, Xray,Diffractions, X-Ray,Diffractions, Xray,X Ray Diffraction,X-Ray Diffractions,Xray Diffractions

Related Publications

A R Sielecki, and M Fujinaga, and R J Read, and M N James
January 1986, Nature,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
April 1987, Journal of molecular biology,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
September 1992, Journal of molecular biology,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
January 1984, Journal of molecular biology,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
November 1994, Biochimica et biophysica acta,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
March 1998, Journal of molecular biology,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
October 1993, Proteins,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
July 1990, Journal of molecular biology,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
November 1994, Acta crystallographica. Section D, Biological crystallography,
A R Sielecki, and M Fujinaga, and R J Read, and M N James
June 1991, Journal of molecular biology,
Copied contents to your clipboard!