Refined structure of satellite tobacco mosaic virus at 1.8 A resolution. 1998

S B Larson, and J Day, and A Greenwood, and A McPherson
Department of Biochemistry, University of California, Riverside, CA 92521, USA.

The molecular structure of satellite tobacco mosaic virus (STMV) has been refined to 1.8 A resolution using X-ray diffraction data collected from crystals grown in microgravity. The final R value was 0.179 and Rfree was 0.184 for 219,086 independent reflections. The final model of the asymmetric unit contained amino acid residues 13 to 159 of a coat protein monomer, 21 nucleotides, a sulfate ion, and 168 water molecules. The nucleotides were visualized as 30 helical segments of nine base-pairs with an additional base stacked at each 3' end, plus a "free" nucleotide, not belonging to the helical segments, but firmly bound by the protein. Sulfate ions are located exactly on 5-fold axes and each is coordinated by ten asparagine side-chains. Of the 10,080 structural waters, 168 per asymmetric unit, about 20% serve to bridge the macromolecular components at protein-protein and protein-nucleic acid interfaces. Binding of RNA to the protein involves some salt linkages, particularly to the phosphate of the free nucleotide, but the major contribution is from an intricate network of hydrogen bonds. There are numerous water molecules in the RNA-protein interface, many serving as intermediate hydrogen bond bridges. The sugar-phosphate backbone contributes most of the donors and acceptors for the RNA. The helical RNA conformation is nearest that of A form DNA. The central region of a helical segment is most extensively involved in contacts with protein, and exhibits low thermal parameters which increase dramatically toward the ends. The visible RNA represents approximately 59% of the total nucleic acid in the virion and is derived from the single-stranded genome, which has folded upon itself to form helical segments. Linking of the helices and the free nucleotides in a contiguous and efficient manner severely restricts the disposition of the remaining, unseen nucleic acid. Using the remaining nucleotides it is possible to fold the RNA according to motifs that provide a periodic distribution of RNA structural elements compatible with the icosahedrally symmetrical arrangement seen in the crystallographic structure. The intimate relationship between protein and nucleic acid in STMV suggests an assembly pathway based on the cooperative and coordinated co-condensation of RNA with capsid protein dimers.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D006860 Hydrogen Bonding A low-energy attractive force between hydrogen and another element. It plays a major role in determining the properties of water, proteins, and other compounds. Hydrogen Bonds,Bond, Hydrogen,Hydrogen Bond
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D013431 Sulfates Inorganic salts of sulfuric acid. Sulfate,Sulfates, Inorganic,Inorganic Sulfates
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D014867 Water A clear, odorless, tasteless liquid that is essential for most animal and plant life and is an excellent solvent for many substances. The chemical formula is hydrogen oxide (H2O). (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Hydrogen Oxide

Related Publications

S B Larson, and J Day, and A Greenwood, and A McPherson
April 1987, Journal of molecular biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
September 1992, Journal of molecular biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
June 1991, Journal of molecular biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
January 1984, Journal of molecular biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
September 1987, Journal of molecular biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
July 1982, Journal of molecular biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
October 1995, Nature structural biology,
S B Larson, and J Day, and A Greenwood, and A McPherson
December 1999, Virology,
S B Larson, and J Day, and A Greenwood, and A McPherson
October 1993, Proteins,
S B Larson, and J Day, and A Greenwood, and A McPherson
March 1975, Nature,
Copied contents to your clipboard!