Synchronous neurite branchings in single goldfish retinal ganglion cells. 1991

A T Ishida, and M H Cheng
Department of Animal Physiology, University of California, Davis 95616.

We have examined the time course of branch formation in neurites of retinal ganglion cells isolated from adult goldfish (Carassius auratus). These neurites elongate at approximately 13 microns/h, and usually branch by bifurcation of growth cones at their tips. The times elapsed between branchings in different neurites of single cells can be described by a Poisson distribution with a mean interval of approximately 2 h. As predicted by this distribution, a relatively large number of branchings occur simultaneously in different neurites of individual cells. Simultaneous branchings of neurites elongating at a common rate generate branch points that lay equidistant from their soma. Since similar branching patterns can be seen in dendrites of retinal ganglion and amacrine cells in situ, these results are consistent with the possibility that dendrites of individual neurons branch synchronously and grow at common rates during development.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004284 Dogfish Sharks of the family Squalidae, also called dogfish sharks. They comprise at least eight genera and 44 species. Their LIVER is valued for its oil and its flesh is often made into fertilizer. Squalidae,Dogfishes
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

A T Ishida, and M H Cheng
November 1989, Journal of neurophysiology,
A T Ishida, and M H Cheng
July 1974, Nature,
A T Ishida, and M H Cheng
February 1988, The Journal of comparative neurology,
A T Ishida, and M H Cheng
August 1990, Proceedings. Biological sciences,
A T Ishida, and M H Cheng
May 1978, Experimental brain research,
A T Ishida, and M H Cheng
March 2005, Molecular vision,
A T Ishida, and M H Cheng
May 2019, Experimental eye research,
A T Ishida, and M H Cheng
January 1998, The Journal of physiology,
A T Ishida, and M H Cheng
January 2007, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!