Asymmetric distribution of retinal ganglion cells in goldfish. 1988

A S Mednick, and A D Springer
Department of Anatomy, New York Medical College, Valhalla 10595.

The distribution of retinal ganglion cells (RGCs) in goldfish was determined by removing an eye and applying cobaltous-lysine to the optic nerve for 24 hr. This procedure allowed the cobalt label to be in continuous contact with the cut ends of the optic axons and thereby backfilled many RGCs. RGC density was determined across three different sizes of retinae by using fish with different eye sizes. Confirming earlier work, we found that RGC density diminished as retinal area increased. However, irrespective of the retinal size, the density of RGCs was elevated along the temporal boundary between the dorsal and the ventral retina. A conservative estimate indicated that the RGC density in the temporal retina was at least 1.8-2.5 times higher than the mean RGC density of the entire retina. Thus, the goldfish retina does not appear to have a homogeneous distribution of RGCs as was previously considered. Small and large retinae differed with respect to the percentage of cells in the RGC layer that was RGCs. In small retinae, even when the noncobalt-filled cells (glia and displaced amacrine cells) were added to the cobalt-filled RGCs, the density of all cell types was elevated in the temporal retina relative to the remainder of the retina. Furthermore, in small retinae, the percentage of cells in the RGC layer that was RGCs (75%) was constant across the radial and circumferential aspects of the retina. In marked contrast, in medium-large retinae, a homogeneous distribution of cells across the entire retina resulted when the noncobalt-filled cells were added to the cobalt-filled cells. However, the percentage of cells that was cobalt-filled RGCs was significantly greater in the temporal retina (50%) than in the remainder of the retina (35%). In large retinae, as in small retinae, the percentage of cells that was RGCs did not vary as a function of distance from the optic disc. These data suggest that, in the course of retinal maturation, cell density in the temporal retina is elevated initially and then declines subsequently to the level of the surrounding retina. Over time, more displaced to the level of the surrounding retina. Over time, more displaced amacrine cells may be added to the tissue surrounding the temporal retina. Alternatively, more RGCs outside the temporal retina may become displaced amacrine cells. Such events could account for the growth-associated, disproportionate decrease in the percentage of cells that is RGCs in the tissue surrounding the temporal retina.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002452 Cell Count The number of CELLS of a specific kind, usually measured per unit volume or area of sample. Cell Density,Cell Number,Cell Counts,Cell Densities,Cell Numbers,Count, Cell,Counts, Cell,Densities, Cell,Density, Cell,Number, Cell,Numbers, Cell
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012165 Retinal Ganglion Cells Neurons of the innermost layer of the retina, the internal plexiform layer. They are of variable sizes and shapes, and their axons project via the OPTIC NERVE to the brain. A small subset of these cells act as photoreceptors with projections to the SUPRACHIASMATIC NUCLEUS, the center for regulating CIRCADIAN RHYTHM. Cell, Retinal Ganglion,Cells, Retinal Ganglion,Ganglion Cell, Retinal,Ganglion Cells, Retinal,Retinal Ganglion Cell

Related Publications

A S Mednick, and A D Springer
November 1989, Journal of neurophysiology,
A S Mednick, and A D Springer
July 1974, Nature,
A S Mednick, and A D Springer
June 1988, Experimental eye research,
A S Mednick, and A D Springer
August 1990, Proceedings. Biological sciences,
A S Mednick, and A D Springer
May 1978, Experimental brain research,
A S Mednick, and A D Springer
May 1991, Visual neuroscience,
A S Mednick, and A D Springer
January 1998, The Journal of physiology,
A S Mednick, and A D Springer
September 1971, Brain research,
A S Mednick, and A D Springer
January 2007, Visual neuroscience,
A S Mednick, and A D Springer
February 1981, Brain research,
Copied contents to your clipboard!