| D008930 |
Mitochondria, Liver |
Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) |
Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver |
|
| D008933 |
Mitochondrial Swelling |
An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. |
Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial |
|
| D002839 |
Chromans |
Benzopyrans saturated in the 2 and 3 positions. |
Dihydrobenzopyrans |
|
| D004305 |
Dose-Response Relationship, Drug |
The relationship between the dose of an administered drug and the response of the organism to the drug. |
Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response |
|
| D000077288 |
Troglitazone |
A chroman and thiazolidinedione derivative that acts as a PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS (PPAR) agonist. It was formerly used in the treatment of TYPE 2 DIABETES MELLITUS, but has been withdrawn due to hepatotoxicity. |
5-(4-((6-Hydroxy-2,5,7,8-tetramethylchroman-2-yl-methoxy)benzyl)-2,4-thiazolidinedione) - T,CS 045,CS-045,Prelay,Rezulin,CS045 |
|
| D000083162 |
Mitochondrial Permeability Transition Pore |
A multiprotein inner mitochondrial complex which opens only under certain pathological conditions (e.g., OXIDATIVE STRESS) uncoupling the membrane leading to APOPTOSIS and MITOCHONDRIAL TRANSMEMBRANE PERMEABILITY-DRIVEN NECROSIS particularly in CARDIOMYOCYTES during MYOCARDIAL REPERFUSION INJURY. |
Mitochondrial Megachannel,Mitochondrial Permeability Transition Pore (mPTP),mPTP Protein |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D017207 |
Rats, Sprague-Dawley |
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. |
Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats |
|
| D017209 |
Apoptosis |
A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. |
Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis |
|
| D017382 |
Reactive Oxygen Species |
Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. |
Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen |
|