Citrinin-induced mitochondrial permeability transition. 1998

E J Da Lozzo, and M B Oliveira, and E G Carnieri
Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, PR, Brasil.

The effects of mycotoxin citrinin on Ca2+ efflux and membrane permeabilization were studied in isolated rat liver mitochondria. The efflux rate observed when in presence of ruthenium red was higher when citrinin was added. Swelling experiments demonstrated Ca(2+)-dependent membrane permeabilization by citrinin. Catalase, butylhydroxitoluene (BHT), and dithiothreitol (DTT) did not protect swelling caused by Ca2+ plus citrinin. The protection conferred by ATP-Mg2+ and cyclosporin A in the latter experiments are strong indications of pore formation. These results suggest that citrinin can induce permeability transition by a mechanism that does not involve oxidative damage.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008933 Mitochondrial Swelling An increase in MITOCHONDRIAL VOLUME due to an influx of fluid; it occurs in hypotonic solutions due to osmotic pressure and in isotonic solutions as a result of altered permeability of the membranes of respiring mitochondria. Giant Mitochondria,Megamitochondria,Mitochondrial Hypertrophy,Giant Mitochondrias,Hypertrophy, Mitochondrial,Megamitochondrias,Mitochondria, Giant,Mitochondrial Hypertrophies,Swelling, Mitochondrial
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002084 Butylated Hydroxytoluene A di-tert-butyl PHENOL with antioxidant properties. Butylhydroxytoluene,2,6-Bis(1,1-dimethylethyl)-4-methylphenol,2,6-Di-t-butyl-4-methylphenol,2,6-Di-tert-butyl-4-methylphenol,2,6-Di-tert-butyl-p-cresol,4-Methyl-2,6-ditertbutylphenol,BHT,Di-tert-butyl-methylphenol,Dibunol,Ionol,Ionol (BHT),2,6 Di t butyl 4 methylphenol,2,6 Di tert butyl 4 methylphenol,2,6 Di tert butyl p cresol,4 Methyl 2,6 ditertbutylphenol,Di tert butyl methylphenol,Hydroxytoluene, Butylated
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D002953 Citrinin Antibiotic and mycotoxin from Aspergillus niveus and Penicillium citrinum.
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E J Da Lozzo, and M B Oliveira, and E G Carnieri
January 2000, Toxicology letters,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
January 2004, Cardiovascular research,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
November 2022, Cells,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
March 2004, Anesthesiology,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
November 2010, Toxicology and applied pharmacology,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
January 2000, Free radical biology & medicine,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
April 2004, Journal of hepatology,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
July 1995, Biochimica et biophysica acta,
E J Da Lozzo, and M B Oliveira, and E G Carnieri
January 1998, BioFactors (Oxford, England),
E J Da Lozzo, and M B Oliveira, and E G Carnieri
June 2002, Journal of bioenergetics and biomembranes,
Copied contents to your clipboard!