Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update. 2010

Elzbieta Jankowska, and Steve A Edgley
Department of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden. Elzbieta.Jankowska@physiol.gu.se

A first step towards understanding the operation of a neural network is identification of the populations of neurons that contribute to it. Our aim here is to reassess the basis for subdivision of adult mammalian spinal interneurons that mediate reflex actions from tendon organs (group Ib afferents) and muscle spindle secondary endings (group II afferents) into separate populations. Re-examining the existing experimental data, we find no compelling reasons to consider intermediate zone interneurons with input from group Ib afferents to be distinct from those co-excited by group II afferents. Similar patterns of distributed input have been found in subpopulations that project ipsilaterally, contralaterally or bilaterally, and in both excitatory and inhibitory interneurons; differences in input from group I and II afferents to individual interneurons showed intra- rather than inter-population variation. Patterns of reflex actions evoked from group Ib and II afferents and task-dependent changes in these actions, e.g. during locomotion, may likewise be compatible with mediation by premotor interneurons integrating information from both group I and II afferents. Pathological changes after injuries of the central nervous system in humans and the lineage of different subclasses of embryonic interneurons may therefore be analyzed without need to consider subdivision of adult intermediate zone interneurons into subpopulations with group Ib or group II input. We propose renaming these neurons 'group I/II interneurons'.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009415 Nerve Net A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction. Neural Networks (Anatomic),Nerve Nets,Net, Nerve,Nets, Nerve,Network, Neural (Anatomic),Networks, Neural (Anatomic),Neural Network (Anatomic)
D012026 Reflex, Stretch Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors. Reflex, Tendon,Stretch Reflex,Tendon Reflex
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013127 Spinal Nerves The 31 paired peripheral nerves formed by the union of the dorsal and ventral spinal roots from each spinal cord segment. The spinal nerve plexuses and the spinal roots are also included. Nerve, Spinal,Nerves, Spinal,Spinal Nerve
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

Elzbieta Jankowska, and Steve A Edgley
February 2000, The European journal of neuroscience,
Elzbieta Jankowska, and Steve A Edgley
January 1987, Experimental brain research,
Elzbieta Jankowska, and Steve A Edgley
December 2000, Neuroscience research,
Elzbieta Jankowska, and Steve A Edgley
March 1994, The Journal of physiology,
Elzbieta Jankowska, and Steve A Edgley
January 2000, The Journal of physiology,
Elzbieta Jankowska, and Steve A Edgley
May 1983, The Journal of physiology,
Copied contents to your clipboard!