Reflex pathways from group II muscle afferents. 2. Functional characteristics of reflex pathways to alpha-motoneurones. 1987

A Lundberg, and K Malmgren, and E D Schomburg

The convergence of group II muscle afferents on interneurones in reflex pathways has been elucidated by investigating interaction in transmission to motoneurones. Recording was also made from interneurones activated from group II afferents. Maximal group II EPSPs evoked in motoneurones from different muscles (extensors or flexors and extensors) did not summate linearly but with a deficit of 35-40%. The corresponding deficit in summation with Ia EPSPs was 7%. It is suggested that the difference in deficit is caused largely by occlusion due to shared interneuronal discharge zones and that it gives an approximate minimal measure of the convergence of group II afferents from different muscles on the interneurones. Tests with weak group II volleys from different muscles gave no or little evidence for spatial facilitation in the disynaptic excitatory pathway to flexor motoneurones, and there was no or little temporal facilitation of transmission in this pathway. It is suggested that group II excitation of the interneurones in this pathway depends on few afferents giving large unitary EPSPs. Convergence of cutaneous afferents and joint afferents on the interneurones was evidenced by spatial facilitation from these afferents of group II transmission to motoneurones. Convergence on interneurones in the trisynaptic inhibitory pathway from group II afferents to extensor motoneurones was also investigated with the spatial facilitation technique. There was convergence on common interneurones of group II afferents from different muscles (extensors or flexors and extensors) and from cutaneous afferents as well as joint afferents. Trisynaptic group II IPSPs, including those depending on spatial facilitation from different muscles were resistant to recurrent depression from motor axon collaterals and are therefore not mediated by the reciprocal Ia inhibitory pathway. Interneurones with monosynaptic group II EPSPs were recorded from in the dorsal horn and intermediate region. Graded stimulation revealed large unitary EPSPs from few group II afferents. The EPSP evoked by a single group II afferent may produce firing (extracellular recording). Convergence of monosynaptic group II EPSPs from different muscles was rather limited but could be from flexors and extensors. Extensive multisensory convergence onto some of these interneurones was indicated by di- or polysynaptic EPSPs from group II and III muscle afferents, from joint afferents and from cutaneous afferents.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D012018 Reflex An involuntary movement or exercise of function in a part, excited in response to a stimulus applied to the periphery and transmitted to the brain or spinal cord.
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D003655 Decerebrate State A condition characterized by abnormal posturing of the limbs that is associated with injury to the brainstem. This may occur as a clinical manifestation or induced experimentally in animals. The extensor reflexes are exaggerated leading to rigid extension of the limbs accompanied by hyperreflexia and opisthotonus. This condition is usually caused by lesions which occur in the region of the brainstem that lies between the red nuclei and the vestibular nuclei. In contrast, decorticate rigidity is characterized by flexion of the elbows and wrists with extension of the legs and feet. The causative lesion for this condition is located above the red nuclei and usually consists of diffuse cerebral damage. (From Adams et al., Principles of Neurology, 6th ed, p358) Decerebrate Posturing,Decorticate Rigidity,Decorticate State,Rigidity, Decerebrate,Rigidity, Decorticate,Decerebrate Posturings,Decerebrate Rigidity,Decerebrate States,Decorticate Rigidities,Decorticate States,Posturing, Decerebrate,Posturings, Decerebrate,Rigidities, Decorticate,State, Decerebrate,States, Decerebrate

Related Publications

A Lundberg, and K Malmgren, and E D Schomburg
January 1988, Experimental brain research,
A Lundberg, and K Malmgren, and E D Schomburg
December 2000, Neuroscience research,
A Lundberg, and K Malmgren, and E D Schomburg
September 2010, The European journal of neuroscience,
A Lundberg, and K Malmgren, and E D Schomburg
October 1994, The Journal of physiology,
A Lundberg, and K Malmgren, and E D Schomburg
July 1993, The Journal of physiology,
A Lundberg, and K Malmgren, and E D Schomburg
June 2004, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Copied contents to your clipboard!