Development of a database of amino acid sequences for human colon carcinoma proteins separated by two-dimensional polyacrylamide gel electrophoresis. 1990

L D Ward, and J Hong, and R H Whitehead, and R J Simpson
Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria, Parkville, Australia.

The tandem use of preparative two-dimensional polyacrylamide gel electrophoresis (2-DE) and electroblotting onto polyvinylidene difluoride membranes has been employed to rapidly isolate a number of proteins from a crude cell extract of a human colon carcinoma cell line (LIM 1863). The immobilized proteins were located by staining with Coomassie Brilliant Blue R-250, and selected protein spots were excised and subjected to Edman degradation. Our results demonstrate that overall sequence yields in the 3-20 pmol range can be achieved on protein spots from four identical 2-DE gels; approximately 150-200 micrograms of total protein was applied to a single 2-DE gel. An approximate two-fold increase in sensitivity of phenylthiohydantoin-amino acid detection (subpicomole range) was achieved by fitting our commercial sequencers with a simple sample transfer device which permitted the analysis of the total phenylthiohydantoin-amino acid derivative. N-Terminal amino acid sequence data was obtained for thirteen electroblotted proteins. All of these sequences positively matched those of proteins of known structure listed in the available protein sequence databases. Approximately 40% of the electroblotted proteins did not yield N-terminal sequence information, presumably because they had blocked N-termini (either naturally or artifactually). Internal amino acid sequence information was obtained from three proteins isolated by preparative 2-DE. This was achieved by in situ digestion of the proteins in the gel matrix with Staphylococcus aureus V8 protease, electrophoresis of the generated peptides in a one-dimensional gel, electrotransfer of the peptides to a polyvinylidene difluoride membrane and microsequence analysis of the electroblotted peptides.

UI MeSH Term Description Entries
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D010669 Phenylthiohydantoin Thiohydantoin benzene derivative.
D011145 Polyvinyls POLYMERS derived from the monomer VINYL COMPOUNDS. Polyvinyl
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012394 Rosaniline Dyes Compounds that contain the triphenylmethane aniline structure found in rosaniline. Many of them have a characteristic magenta color and are used as COLORING AGENTS. Fuchsins,Magentas,Fuchsin,Triphenylmethane Aniline Compounds,Aniline Compounds, Triphenylmethane,Compounds, Triphenylmethane Aniline,Dyes, Rosaniline
D012697 Serine Endopeptidases Any member of the group of ENDOPEPTIDASES containing at the active site a serine residue involved in catalysis. Serine Endopeptidase,Endopeptidase, Serine,Endopeptidases, Serine

Related Publications

L D Ward, and J Hong, and R H Whitehead, and R J Simpson
July 2000, Electrophoresis,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
August 1975, FEBS letters,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
January 1997, Electrophoresis,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
October 1990, Journal of chromatography,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
February 1989, Electrophoresis,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
May 1990, Journal of chromatography,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
January 1985, Journal of chromatography,
L D Ward, and J Hong, and R H Whitehead, and R J Simpson
May 1998, Electrophoresis,
Copied contents to your clipboard!