Structural analysis of bovine pancreatic thread protein. 1990

L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
W. Alton Jones Cell Science Center, Inc., Lake Placid, New York 12946.

Pancreatic thread protein (PTP) forms double helical threads in the neutral pH range after purification, undergoing freely reversible, pH-dependent globule-fibril transformation. The purified bovine PTP consists on SDS gels of two carbohydrate-free polypeptide chains (Gross et al., 1985). Plasma desorption mass spectrometry and amino acid sequence analysis now confirm that bovine PTP contains two disulfide-bonded polypeptides, an A chain of 101 amino acid residues with a molecular weight of 11,073 and a B chain of 35 residues with a molecular weight of 3970. The intact protein exhibits a molecular weight of 15,036, agreeing greater than 99.9% with the molecular weight calculated from the sequence. The B chain sequence was determined by gas-phase Edman degradation of the intact polypeptide. The A chain sequence was determined from overlapping peptides generated by cleavage at lysyl, tryptophanyl, and aspartyl-prolyl residues. Based upon the bovine PTP cDNA structure, the two chains of the protein result from cleavage of a single polypeptide with removal of a dipeptide between the NH2-terminal A chain and COOH-terminal B chain. Comparison of bovine PTP with other proteins reveals significant structural relatedness with the single-chain homologues from human and rat pancreas and with the motif associated with Ca2(+)-dependent carbohydrate recognition domains. The physiological role of PTP has not yet been resolved. The protein is present in very high concentration in pancreatic secretion and it has been detected in brain lesions in Alzheimer's disease and Down syndrome and in regenerating rat pancreatic islets. The present results provide a firm protein base for ongoing molecular, physical-chemical, and structure-function studies of this unusual protein.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
January 1987, Lancet (London, England),
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
April 1996, Gastroenterology,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
May 1999, Biochemical and biophysical research communications,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
March 2016, Biochemistry and biophysics reports,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
January 2000, DNA sequence : the journal of DNA sequencing and mapping,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
July 1980, Journal of biochemistry,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
January 1983, Nucleic acids symposium series,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
January 2016, Virology,
L Cai, and W R Harris, and D R Marshak, and J Gross, and J W Crabb
October 1971, The Journal of biological chemistry,
Copied contents to your clipboard!