Immunologgical self-tolerance in allophenic and embryo-aggregated mice. 2010

Richmond T Prehn, and Liisa M Prehn
Dept of Pathology, University of Washington, 5433 South Hudson St, Seattle, WA 98118, USA. prehn@u.washington.edu

Allophenic mice, supposedly containing almost equal numbers of cells derived from embryos of mouse strains C57Bl and FVB, were shown in a recent paper to grow the B16 melanoma, a long transplanted tumor of C57Bl origin, much better than did mice of either the parental C57Bl strain or the C57Bl x FVB F1 hybrid. Mice containing smaller proportions of C57Bl cells rejected the tumor. A reconsideration of these suprising data, in light of the current literature, suggests that the better growth of the tumor in the 50-50% allophenics than in the C57Bl parental strain was almost certainly caused by the tumor stimulation engendered by a weak anti-C57Bl immune reaction in the overtly healthy allophenic mice.

UI MeSH Term Description Entries
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017634 Self Tolerance The normal lack of the ability to produce an immunological response to autologous (self) antigens. A breakdown of self tolerance leads to autoimmune diseases. The ability to recognize the difference between self and non-self is the prime function of the immune system. Self Tolerances,Tolerance, Self,Tolerances, Self
D017711 Nonlinear Dynamics The study of systems which respond disproportionately (nonlinearly) to initial conditions or perturbing stimuli. Nonlinear systems may exhibit "chaos" which is classically characterized as sensitive dependence on initial conditions. Chaotic systems, while distinguished from more ordered periodic systems, are not random. When their behavior over time is appropriately displayed (in "phase space"), constraints are evident which are described by "strange attractors". Phase space representations of chaotic systems, or strange attractors, usually reveal fractal (FRACTALS) self-similarity across time scales. Natural, including biological, systems often display nonlinear dynamics and chaos. Chaos Theory,Models, Nonlinear,Non-linear Dynamics,Non-linear Models,Chaos Theories,Dynamics, Non-linear,Dynamics, Nonlinear,Model, Non-linear,Model, Nonlinear,Models, Non-linear,Non linear Dynamics,Non linear Models,Non-linear Dynamic,Non-linear Model,Nonlinear Dynamic,Nonlinear Model,Nonlinear Models,Theories, Chaos,Theory, Chaos
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018448 Models, Immunological Theoretical representations that simulate the behavior or activity of immune system, processes, or phenomena. They include the use of mathematical equations, computers, and other electrical equipment. Immunological Models,Immunologic Model,Model, Immunologic,Immunologic Models,Immunological Model,Model, Immunological,Models, Immunologic

Related Publications

Richmond T Prehn, and Liisa M Prehn
February 1983, Experientia,
Richmond T Prehn, and Liisa M Prehn
December 1967, Science (New York, N.Y.),
Richmond T Prehn, and Liisa M Prehn
April 2007, Journal of immunology (Baltimore, Md. : 1950),
Richmond T Prehn, and Liisa M Prehn
January 1985, Experimental gerontology,
Richmond T Prehn, and Liisa M Prehn
October 1977, Differentiation; research in biological diversity,
Richmond T Prehn, and Liisa M Prehn
May 1969, The Journal of experimental medicine,
Richmond T Prehn, and Liisa M Prehn
October 1978, Journal of embryology and experimental morphology,
Richmond T Prehn, and Liisa M Prehn
November 1973, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Richmond T Prehn, and Liisa M Prehn
January 1971, International review of experimental pathology,
Copied contents to your clipboard!