Ca²+ spark-dependent and -independent sarcoplasmic reticulum Ca²+ leak in normal and failing rabbit ventricular myocytes. 2010

Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA. azima@lumc.edu

Sarcoplasmic reticulum (SR) Ca²(+) leak is an important component of cardiac Ca²(+) signalling. Together with the SR Ca²(+)-ATPase (SERCA)-mediated Ca²(+) uptake, diastolic Ca²(+) leak determines SR Ca²(+) load and, therefore, the amplitude of Ca²(+) transients that initiate contraction. Spontaneous Ca²(+) sparks are thought to play a major role in SR Ca²(+) leak. In this study, we determined the quantitative contribution of sparks to SR Ca²(+) leak and tested the hypothesis that non-spark mediated Ca²(+) release also contributes to SR Ca²(+) leak. We simultaneously measured spark properties and intra-SR free Ca²(+) ([Ca²(+)](SR)) after complete inhibition of SERCA with thapsigargin in permeabilized rabbit ventricular myocytes. When [Ca²(+)](SR) declined to 279 ± 10 μm, spark activity ceased completely; however SR Ca²(+) leak continued, albeit at a slower rate. Analysis of sparks and [Ca²(+)](SR) revealed, that SR Ca²(+) leak increased as a function of [Ca²(+)](SR), with a particularly steep increase at higher [Ca²(+)](SR) ( >600 μm) where sparks become a major pathway of SR Ca²(+) leak. At low [Ca²(+)](SR) (< 300 μm), however, Ca²(+) leak occurred mostly as non-spark-mediated leak. Sensitization of ryanodine receptors (RyRs) with low doses of caffeine increased spark frequency and SR Ca²(+) leak. Complete inhibition of RyR abolished sparks and significantly decreased SR Ca²(+) leak, but did not prevent it entirely, suggesting the existence of RyR-independent Ca²(+) leak. Finally, we found that RyR-mediated Ca²(+) leak was enhanced in myocytes from failing rabbit hearts. These results show that RyRs are the main, but not sole contributor to SR Ca²(+) leak. RyR-mediated leak occurs in part as Ca²(+) sparks, but there is clearly RyR-mediated but Ca²(+) sparks independent leak.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006333 Heart Failure A heterogeneous condition in which the heart is unable to pump out sufficient blood to meet the metabolic need of the body. Heart failure can be caused by structural defects, functional abnormalities (VENTRICULAR DYSFUNCTION), or a sudden overload beyond its capacity. Chronic heart failure is more common than acute heart failure which results from sudden insult to cardiac function, such as MYOCARDIAL INFARCTION. Cardiac Failure,Heart Decompensation,Congestive Heart Failure,Heart Failure, Congestive,Heart Failure, Left-Sided,Heart Failure, Right-Sided,Left-Sided Heart Failure,Myocardial Failure,Right-Sided Heart Failure,Decompensation, Heart,Heart Failure, Left Sided,Heart Failure, Right Sided,Left Sided Heart Failure,Right Sided Heart Failure
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D019837 Ryanodine Receptor Calcium Release Channel A tetrameric calcium release channel in the SARCOPLASMIC RETICULUM membrane of SMOOTH MUSCLE CELLS, acting oppositely to SARCOPLASMIC RETICULUM CALCIUM-TRANSPORTING ATPASES. It is important in skeletal and cardiac excitation-contraction coupling and studied by using RYANODINE. Abnormalities are implicated in CARDIAC ARRHYTHMIAS and MUSCULAR DISEASES. Calcium-Ryanodine Receptor Complex,RyR1,Ryanodine Receptor 1,Ryanodine Receptor 2,Ryanodine Receptor 3,Ryanodine Receptors,Ca Release Channel-Ryanodine Receptor,Receptor, Ryanodine,RyR2,RyR3,Ryanodine Receptor,Ca Release Channel Ryanodine Receptor,Calcium Ryanodine Receptor Complex,Complex, Calcium-Ryanodine Receptor,Receptor 1, Ryanodine,Receptor 2, Ryanodine,Receptor 3, Ryanodine,Receptor Complex, Calcium-Ryanodine,Receptors, Ryanodine
D020013 Calcium Signaling Signal transduction mechanisms whereby calcium mobilization (from outside the cell or from intracellular storage pools) to the cytoplasm is triggered by external stimuli. Calcium signals are often seen to propagate as waves, oscillations, spikes, sparks, or puffs. The calcium acts as an intracellular messenger by activating calcium-responsive proteins. Calcium Oscillations,Calcium Waves,Calcium Puffs,Calcium Sparks,Calcium Spikes,Calcium Oscillation,Calcium Puff,Calcium Signalings,Calcium Spark,Calcium Spike,Calcium Wave,Oscillation, Calcium,Oscillations, Calcium,Puff, Calcium,Puffs, Calcium,Signaling, Calcium,Signalings, Calcium,Spark, Calcium,Sparks, Calcium,Spike, Calcium,Spikes, Calcium,Wave, Calcium,Waves, Calcium
D032383 Myocytes, Cardiac Striated muscle cells found in the heart. They are derived from cardiac myoblasts (MYOBLASTS, CARDIAC). Cardiomyocytes,Muscle Cells, Cardiac,Muscle Cells, Heart,Cardiac Muscle Cell,Cardiac Muscle Cells,Cardiac Myocyte,Cardiac Myocytes,Cardiomyocyte,Cell, Cardiac Muscle,Cell, Heart Muscle,Cells, Cardiac Muscle,Cells, Heart Muscle,Heart Muscle Cell,Heart Muscle Cells,Muscle Cell, Cardiac,Muscle Cell, Heart,Myocyte, Cardiac

Related Publications

Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
July 2002, Frontiers in bioscience : a journal and virtual library,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
October 2012, Cardiovascular research,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
March 2009, American journal of physiology. Heart and circulatory physiology,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
July 1998, Biophysical journal,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
November 2002, Annals of the New York Academy of Sciences,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
August 2001, Biophysical journal,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
August 1993, The American journal of physiology,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
May 1995, Biophysical journal,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
March 2013, Biophysical journal,
Aleksey V Zima, and Elisa Bovo, and Donald M Bers, and Lothar A Blatter
October 2003, Circulation research,
Copied contents to your clipboard!