Na-Ca exchange and the trigger for sarcoplasmic reticulum Ca release: studies in adult rabbit ventricular myocytes. 1998

S E Litwin, and J Li, and J H Bridge
Division of Cardiology, Salt Lake City Veterans Affairs Medical Center, Salt Lake City, Utah 84148, USA. slitwin@msscc.med.utah.edu

The importance of Na-Ca exchange as a trigger for sarcoplasmic reticulum (SR) Ca release remains controversial. Therefore, we measured whole-cell Ca currents (ICa), Na-Ca exchange currents (INaCa), cellular contractions, and intracellular Ca transients in adult rabbit cardiac myocytes. We found that changing pipette Na concentration markedly affected the relationship between cell shortening (or Ca transients) and voltage, but did not affect the Ca current-voltage relationship. We then inhibited Na-Ca exchange and varied SR content (by changing the number of conditioning pulses before each test pulse). Regardless of SR Ca content, the relationship between contraction and voltage was bell-shaped in the absence of Na-Ca exchange. Next, we rapidly and completely blocked ICa by applying nifedipine to cells. Cellular shortening was variably reduced in the presence of nifedipine. The component of shortening blocked by nifedipine had a bell-shaped relationship with voltage, whereas the "nifedipine-insensitive" component of contraction increased with voltage. With the SR disabled (ryanodine and thapsigargin pretreatment), ICa could initiate late-peaking contractions that were approximately 70% of control amplitude. In contrast, nifedipine-insensitive contractions could not be elicited in the presence of ryanodine and thapsigargin. Finally, we recorded reverse Na-Ca exchange currents that were activated by membrane depolarization. The estimated sarcolemmal Ca flux occurring by Na-Ca exchange (during voltage clamp steps to +30 mV) was approximately 10-fold less than that occurring by ICa. Therefore, Na-Ca exchange alone is unlikely to raise cytosolic Ca concentration enough to directly activate the myofilaments. We conclude that reverse Na-Ca exchange can trigger SR Ca release. Because of the sigmoidal relationship between the open probability of the SR Ca release channel and pCa, the effects of ICa and INaCa may not sum in a linear fashion. Rather, the two triggers may act synergistically in the modulation of SR release.

UI MeSH Term Description Entries
D007424 Intracellular Fluid The fluid inside CELLS. Fluid, Intracellular,Fluids, Intracellular,Intracellular Fluids
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right

Related Publications

S E Litwin, and J Li, and J H Bridge
July 2002, Frontiers in bioscience : a journal and virtual library,
S E Litwin, and J Li, and J H Bridge
December 1996, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
S E Litwin, and J Li, and J H Bridge
March 2014, Free radical biology & medicine,
S E Litwin, and J Li, and J H Bridge
December 2011, The Journal of physiology,
S E Litwin, and J Li, and J H Bridge
April 2015, Cold Spring Harbor protocols,
S E Litwin, and J Li, and J H Bridge
March 2009, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!