Organ-specific modulation of gene expression in transgenic plants using antisense RNA. 1990

M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
BioTechnica International, Inc., Cambridge, MA 02140.

We have shown leaf-specific inhibition GUS gene expression in transgenic Nicotiana plants using an antisense RNA with a 41-base homology spanning the translation start codon of the gene. GUS was expressed from the nominally constitutive 35S promoter and the antisense RNA was expressed from the light-regulated ca/b promoter of Arabidopsis thaliana. A range of GUS inhibition from 0 to 100% was obtained by screening a small population of transgenic plants and the specific levels of inhibition observed were stably inherited in two generations. An antiGUS 'gene' dosage effect was observed in plants which were homozygous for antiGUS. RNA detection results suggest that duplex formation with the 41 base pair antiGUS RNA destabilized the GUS mRNA and that an excess of antisense RNA was not required. Our results demonstrate the potential of antisense RNA as a strategy for obtaining plant mutants, especially 'down mutations' in essential genes where only a short 5' sequence of the mRNA is required. They also suggest that the 'position effect' on gene expression could be used in conjunction with an antisense RNA strategy to provide a versatile approach for crop improvement.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005966 Glucuronidase Endo-beta-D-Glucuronidase,Endoglucuronidase,Exo-beta-D-Glucuronidase,beta-Glucuronidase,Endo beta D Glucuronidase,Exo beta D Glucuronidase,beta Glucuronidase
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants

Related Publications

M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
October 1989, Plant molecular biology,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
August 1990, Molekuliarnaia genetika, mikrobiologiia i virusologiia,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
November 1994, Biological chemistry Hoppe-Seyler,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
May 1988, Plant molecular biology,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
June 1988, Proceedings of the National Academy of Sciences of the United States of America,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
March 1996, Transgenic research,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
July 1990, The Plant cell,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
January 1995, Molecular plant-microbe interactions : MPMI,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
September 1988, Molecular & general genetics : MGG,
M Cannon, and J Platz, and M O'Leary, and C Sookdeo, and F Cannon
January 2020, Frontiers in plant science,
Copied contents to your clipboard!