Measuring the constitutive activation of c-Jun N-terminal kinase isoforms. 2010

Ryan T Nitta, and Shawn S Badal, and Albert J Wong
Department of Neurosurgery, Cancer Biology Program, Stanford University Medical Center, Stanford, California, USA.

The c-Jun N-terminal kinases (JNK) are important regulators of cell growth, proliferation, and apoptosis. JNKs are typically activated by a sequence of events that include phosphorylation of its T-P-Y motif by an upstream kinase, followed by homodimerization and translocation to the nucleus. Constitutive activation of JNK has been found in a variety of cancers including non-small cell lung carcinomas, gliomas, and mantle cell lymphoma. In vitro studies show that constitutive activation of JNK induces a transformed phenotype in fibroblasts and enhances tumorigenicity in a variety of cell lines. Interestingly, a subset of JNK isoforms was recently found to autoactivate rendering the proteins constitutively active. These constitutively active JNK proteins were found to play a pivotal role in activating transcription factors that increase cellular growth and tumor formation in mice. In this chapter, we describe techniques and methods that have been successfully used to study the three components of JNK activation. Use of these techniques may lead to a better understanding of the components of JNK pathways and how JNK is activated in cancer cells.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D048031 JNK Mitogen-Activated Protein Kinases A subgroup of mitogen-activated protein kinases that activate TRANSCRIPTION FACTOR AP-1 via the phosphorylation of C-JUN PROTEINS. They are components of intracellular signaling pathways that regulate CELL PROLIFERATION; APOPTOSIS; and CELL DIFFERENTIATION. jun N-Terminal Kinase,c-jun Amino-Terminal Kinase,c-jun N-Terminal Kinase,jun-NH2-Terminal Kinase,jun-NH2-Terminal Kinases,Amino-Terminal Kinase, c-jun,JNK Mitogen Activated Protein Kinases,Kinase, jun N-Terminal,N-Terminal Kinase, c-jun,N-Terminal Kinase, jun,c jun Amino Terminal Kinase,c jun N Terminal Kinase,jun N Terminal Kinase,jun NH2 Terminal Kinase,jun NH2 Terminal Kinases
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057075 Enzyme Assays Methods used to measure the relative activity of a specific enzyme or its concentration in solution. Typically an enzyme substrate is added to a buffer solution containing enzyme and the rate of conversion of substrate to product is measured under controlled conditions. Many classical enzymatic assay methods involve the use of synthetic colorimetric substrates and measuring the reaction rates using a spectrophotometer. Enzymatic Assays,Indirect Enzymatic Assays,Indirect Enzyme Assays,Assay, Enzymatic,Assay, Enzyme,Assay, Indirect Enzymatic,Assay, Indirect Enzyme,Assays, Enzymatic,Assays, Enzyme,Assays, Indirect Enzymatic,Assays, Indirect Enzyme,Enzymatic Assay,Enzymatic Assay, Indirect,Enzymatic Assays, Indirect,Enzyme Assay,Enzyme Assay, Indirect,Enzyme Assays, Indirect,Indirect Enzymatic Assay,Indirect Enzyme Assay

Related Publications

Ryan T Nitta, and Shawn S Badal, and Albert J Wong
January 2007, Pulmonary pharmacology & therapeutics,
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
January 1998, The Journal of biological chemistry,
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
October 2000, Molecular endocrinology (Baltimore, Md.),
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
February 2011, Protein expression and purification,
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
May 2008, Journal of neuro-oncology,
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
October 2014, BMC immunology,
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
August 2002, The Journal of biological chemistry,
Ryan T Nitta, and Shawn S Badal, and Albert J Wong
November 1995, Molecular and cellular biology,
Copied contents to your clipboard!