Diaphragmatic fatigue in the rat. 1990

F A Wali, and A H Suer, and C H Dark
Anaesthetics Unit, London Hospital Medical College, Whitechapel, England.

We studied fatigue of rat diaphragm in response to repetitive brief and prolonged electrical stimulation of the phrenic nerve, at 0.2, 1-100 Hz. Low and high frequency of stimulation produced twitch and tetanic contractions in the rat diaphragm. A mean maximum twitch tension of 1.4 +/- 0.1 g was produced at 1 Hz, and a mean maximum tetanic tension of 5.6 +/- 0.3 g was obtained at 100 Hz (means +/- S.E., n = 8). Twitch and tetanic fatigue was produced at all frequencies of stimulations, but with different time scale, or duration, and with different number of stimuli delivered to the muscle. At low rates of stimulation, e.g. 10 Hz, fewer stimuli were needed to fatigue the muscle (3000 in 5 min), whereas at high rates of stimulation, e.g. 50 Hz, more stimuli were needed to fatigue the muscle (6600 in 2.2 min). The amplitude of the tetanic tensions elicited at 10 and 50 Hz, at the end of 5 or 2 min fatiguing stimulation, was 39 +/- 2.7% and 80 +/- 3.1% of their respective control tensions (2.8 +/- 0 2 g and 5.3 +/- 0.5 g, n = 8, P 0.001). It was concluded that fatigue in the rat diaphragm depended on the frequency and duration of stimulation as well as on the number of stimuli delivered to the muscle. Various mechanisms of muscle fatigue are described in the discussion to explain the observations made in the present investigation.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

F A Wali, and A H Suer, and C H Dark
August 1977, Journal of applied physiology: respiratory, environmental and exercise physiology,
F A Wali, and A H Suer, and C H Dark
February 1979, The American review of respiratory disease,
F A Wali, and A H Suer, and C H Dark
February 1979, The American review of respiratory disease,
F A Wali, and A H Suer, and C H Dark
April 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
F A Wali, and A H Suer, and C H Dark
January 1990, Medicina,
F A Wali, and A H Suer, and C H Dark
May 1994, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
F A Wali, and A H Suer, and C H Dark
March 1985, Journal of applied physiology (Bethesda, Md. : 1985),
F A Wali, and A H Suer, and C H Dark
July 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
F A Wali, and A H Suer, and C H Dark
July 1996, American journal of respiratory and critical care medicine,
F A Wali, and A H Suer, and C H Dark
January 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!