Diaphragmatic fatigue in man. 1977

C S Roussos, and P T Macklem

The time required (tlim) to produce fatigue of the diaphragm was determined in three normal seated subjects, breathing through a variety of high alinear, inspiratory resistances. During each breath in all experimental runs the subject generated a transdiaphragmatic pressure (Pdi) which was a predetermined fraction of his maximum inspiratory Pdi (Pdimax) at functional residual capacity. The breathing test was performed until the subject was unable to generate this Pdi. The relationship between Pdi/Pdimax and tlim was curvilinear so that when Pdi/Pdimax was small tlim increased markedly for little changes in Pdi/Pdimax. The value of Pdi/Pdimax that could be generated indefinitely (Pdicrit) was around 0.4. Hypoxia appeared to have no influence on Pdicrit, but probably led to a reduction in tlim at Pdi greater than Pdicrit for equal rates of energy consumption. Insofar as the behavior of the diaphragm reflects that of other respiratory muscles it appears that quite high inspiratory loads can be tolerated indefinitely. However, when the energy consumption of the respiratory muscles exceeds a critical level, fatigue should develop. This may be a mechanism of respiratory failure in a variety in a variety of lung diseases.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008176 Lung Volume Measurements Measurement of the amount of air that the lungs may contain at various points in the respiratory cycle. Lung Capacities,Lung Volumes,Capacity, Lung,Lung Capacity,Lung Volume,Lung Volume Measurement,Measurement, Lung Volume,Volume, Lung
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D011187 Posture The position or physical attitude of the body. Postures
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D012131 Respiratory Insufficiency Failure to adequately provide oxygen to cells of the body and to remove excess carbon dioxide from them. (Stedman, 25th ed) Acute Hypercapnic Respiratory Failure,Acute Hypoxemic Respiratory Failure,Hypercapnic Acute Respiratory Failure,Hypercapnic Respiratory Failure,Hypoxemic Acute Respiratory Failure,Hypoxemic Respiratory Failure,Respiratory Depression,Respiratory Failure,Ventilatory Depression,Depressions, Ventilatory,Failure, Hypercapnic Respiratory,Failure, Hypoxemic Respiratory,Failure, Respiratory,Hypercapnic Respiratory Failures,Hypoxemic Respiratory Failures,Respiratory Failure, Hypercapnic,Respiratory Failure, Hypoxemic,Respiratory Failures
D003964 Diaphragm The musculofibrous partition that separates the THORACIC CAVITY from the ABDOMINAL CAVITY. Contraction of the diaphragm increases the volume of the thoracic cavity aiding INHALATION. Respiratory Diaphragm,Diaphragm, Respiratory,Diaphragms,Diaphragms, Respiratory,Respiratory Diaphragms
D005082 Physical Exertion Expenditure of energy during PHYSICAL ACTIVITY. Intensity of exertion may be measured by rate of OXYGEN CONSUMPTION; HEAT produced, or HEART RATE. Perceived exertion, a psychological measure of exertion, is included. Physical Effort,Effort, Physical,Efforts, Physical,Exertion, Physical,Exertions, Physical,Physical Efforts,Physical Exertions
D005105 Expiratory Reserve Volume The extra volume of air that can be expired with maximum effort beyond the level reached at the end of a normal, quiet expiration. Common abbreviation is ERV. Expiratory Reserve Volumes,Reserve Volume, Expiratory,Reserve Volumes, Expiratory,Volume, Expiratory Reserve,Volumes, Expiratory Reserve

Related Publications

C S Roussos, and P T Macklem
March 1981, Journal of applied physiology: respiratory, environmental and exercise physiology,
C S Roussos, and P T Macklem
February 1979, The American review of respiratory disease,
C S Roussos, and P T Macklem
January 1990, Acta physiologica Hungarica,
C S Roussos, and P T Macklem
January 1990, Medicina,
C S Roussos, and P T Macklem
May 1994, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
C S Roussos, and P T Macklem
March 1985, Journal of applied physiology (Bethesda, Md. : 1985),
C S Roussos, and P T Macklem
July 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
C S Roussos, and P T Macklem
April 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
C S Roussos, and P T Macklem
November 1962, Vie medicale (Paris, France : 1920),
C S Roussos, and P T Macklem
July 1996, American journal of respiratory and critical care medicine,
Copied contents to your clipboard!