Effect of hyperosmotic challenge on basolateral membrane potential in rabbit urinary bladder. 1990

P J Donaldson, and S A Lewis
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.

In the rabbit urinary bladder, serosal hyperosmotic challenge (SHOC) with either 33 mM NaCl or 66 mM mannitol caused basolateral membrane potential (Vbl) to initially depolarize from -52.6 +/- 1.6 to -48.4 +/- 1.4 mV, followed by a recovery of Vbl to -57.5 +/- 1.3 mV after 13.7 +/- 1.0 min. The voltage recovery was dependent on both serosal HCO3- and Cl-, and in the absence of both, Vbl depolarized to -11.6 +/- 1.5 mV and the ratio of apical-to-basolateral resistance (Ra/Rbl) decreased from 21.0 +/- 3.4 to 8.3 +/- 3.1. This decrease in Ra/Rbl and consequent depolarization of Vbl is caused by a decrease in basolateral K+ conductance. Replacement of serosal Cl- with NO3- or SCN- followed by SHOC caused a sustained depolarization of Vbl to -32.5 +/- 4.4 and -40.9 +/- 0.9 mV, respectively. However, when Br- was used to replace Cl-, voltage recovery occurred but was slowed (24.0 +/- 2.7 min) and reduced in magnitude (-47.5 +/- 3.5 mV). Addition of amiloride (1 mM) or niflumic acid (100 microM), but not bumetanide (1 microM), to the serosal bathing solution inhibited voltage recovery causing Vbl to depolarize to -36.3 +/- 2.6 and -41.5 +/- 4.5 mV, respectively. Serosal addition of ouabain after SHOC caused Vbl to depolarize by 10.8 +/- 0.9 mV in 2 min. We speculate that the SHOC-induced initial depolarization of Vbl is a loss of Ba2(+)-sensitive K+ conductance caused by cell shrinkage. The subsequent repolarization/hyperpolarization of Vbl is caused by an enhanced basolateral membrane Na+ pump current and a reappearance of the Ba2(+)-sensitive K+ conductance. The parallel operation of Na(+)-H+ and Cl(-)-HCO3- exchanges will then supply Na+ for the pump current and, via cellular accumulation of Na+, K+, and Cl-, might result in a partial recovery of cell volume and thus Ba2(+)-sensitive K+ conductance.

UI MeSH Term Description Entries
D006982 Hypertonic Solutions Solutions that have a greater osmotic pressure than a reference solution such as blood, plasma, or interstitial fluid. Hypertonic Solution,Solution, Hypertonic,Solutions, Hypertonic
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008353 Mannitol A diuretic and renal diagnostic aid related to sorbitol. It has little significant energy value as it is largely eliminated from the body before any metabolism can take place. It can be used to treat oliguria associated with kidney failure or other manifestations of inadequate renal function and has been used for determination of glomerular filtration rate. Mannitol is also commonly used as a research tool in cell biological studies, usually to control osmolarity. (L)-Mannitol,Osmitrol,Osmofundin
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009092 Mucous Membrane An EPITHELIUM with MUCUS-secreting cells, such as GOBLET CELLS. It forms the lining of many body cavities, such as the DIGESTIVE TRACT, the RESPIRATORY TRACT, and the reproductive tract. Mucosa, rich in blood and lymph vessels, comprises an inner epithelium, a middle layer (lamina propria) of loose CONNECTIVE TISSUE, and an outer layer (muscularis mucosae) of SMOOTH MUSCLE CELLS that separates the mucosa from submucosa. Lamina Propria,Mucosa,Mucosal Tissue,Muscularis Mucosae,Mucous Membranes,Membrane, Mucous,Membranes, Mucous,Mucosae, Muscularis,Mucosal Tissues,Propria, Lamina,Tissue, Mucosal,Tissues, Mucosal
D009544 Niflumic Acid An analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. Donalgin,Flunir,Niflactol,Niflugel,Nifluril,Acid, Niflumic
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder

Related Publications

P J Donaldson, and S A Lewis
January 1985, Pflugers Archiv : European journal of physiology,
P J Donaldson, and S A Lewis
January 1982, The Journal of membrane biology,
P J Donaldson, and S A Lewis
November 1982, The Journal of general physiology,
P J Donaldson, and S A Lewis
April 1987, The Journal of general physiology,
P J Donaldson, and S A Lewis
December 1984, The American journal of physiology,
P J Donaldson, and S A Lewis
February 1988, The Journal of urology,
P J Donaldson, and S A Lewis
January 1987, The Journal of membrane biology,
P J Donaldson, and S A Lewis
January 1989, The Journal of urology,
P J Donaldson, and S A Lewis
December 2007, BJU international,
Copied contents to your clipboard!