Detection of functional matrix metalloproteinases by zymography. 2010

Xueyou Hu, and Christine Beeton
Department of Molecular Physiology and Biophysics, Baylor College of Medicine, USA.

Matrix metalloproteinases (MMPs) are zinc-containing endopeptidases. They degrade proteins by cleavage of peptide bonds. More than twenty MMPs have been identified and are separated into six groups based on their structure and substrate specificity (collagenases, gelatinases, membrane type [MT-MMP], stromelysins, matrilysins, and others). MMPs play a critical role in cell invasion, cartilage degradation, tissue remodeling, wound healing, and embryogenesis. They therefore participate in both normal processes and in the pathogenesis of many diseases, such as rheumatoid arthritis, cancer, or chronic obstructive pulmonary disease. Here, we will focus on MMP-2 (gelatinase A, type IV collagenase), a widely expressed MMP. We will demonstrate how to detect MMP-2 in cell culture supernatants by zymography, a commonly used, simple, and yet very sensitive technique first described in 1980 by C. Heussen and E.B. Dowdle. This technique is semi-quantitative, it can therefore be used to determine MMP levels in test samples when known concentrations of recombinant MMP are loaded on the same gel. Solutions containing MMPs (e.g. cell culture supernatants, urine, or serum) are loaded onto a polyacrylamide gel containing sodium dodecyl sulfate (SDS; to linearize the proteins) and gelatin (substrate for MMP-2). The sample buffer is designed to increase sample viscosity (to facilitate gel loading), provide a tracking dye (bromophenol blue; to monitor sample migration), provide denaturing molecules (to linearize proteins), and control the pH of the sample. Proteins are then allowed to migrate under an electric current in a running buffer designed to provide a constant migration rate. The distance of migration is inversely correlated with the molecular weight of the protein (small proteins move faster through the gel than large proteins do and therefore migrate further down the gel). After migration, the gel is placed in a renaturing buffer to allow proteins to regain their tertiary structure, necessary for enzymatic activity. The gel is then placed in a developing buffer designed to allow the protease to digest its substrate. The developing buffer also contains p-aminophenylmercuric acetate (APMA) to activate the non-proteolytic pro-MMPs into active MMPs. The next step consists of staining the substrate (gelatin in our example). After washing the excess dye off the gel, areas of protease digestion appear as clear bands. The clearer the band, the more concentrated the protease it contains. Band staining intensity can then be determined by densitometry, using a software such as ImageJ, allowing for sample comparison.

UI MeSH Term Description Entries
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000180 Acrylic Resins Polymers of high molecular weight which are derived from acrylic acid, methacrylic acid or other related compounds and are capable of being molded and then hardened to form useful components. Acrylic Resin,Resin, Acrylic,Resins, Acrylic
D012967 Sodium Dodecyl Sulfate An anionic surfactant, usually a mixture of sodium alkyl sulfates, mainly the lauryl; lowers surface tension of aqueous solutions; used as fat emulsifier, wetting agent, detergent in cosmetics, pharmaceuticals and toothpastes; also as research tool in protein biochemistry. Sodium Lauryl Sulfate,Irium,Dodecyl Sulfate, Sodium,Lauryl Sulfate, Sodium,Sulfate, Sodium Dodecyl,Sulfate, Sodium Lauryl
D020778 Matrix Metalloproteinase 2 A secreted endopeptidase homologous with INTERSTITIAL COLLAGENASE, but which possesses an additional fibronectin-like domain. Gelatinase A,72-kDa Gelatinase,72-kDa Type IV Collagenase,MMP-2 Metalloproteinase,MMP2 Metalloproteinase,Matrix Metalloproteinase-2,72 kDa Gelatinase,72 kDa Type IV Collagenase,Gelatinase, 72-kDa,MMP 2 Metalloproteinase,Metalloproteinase 2, Matrix,Metalloproteinase, MMP-2,Metalloproteinase, MMP2
D020782 Matrix Metalloproteinases A family of zinc-dependent metalloendopeptidases that is involved in the degradation of EXTRACELLULAR MATRIX components. MMP,MMPs,Matrix Metalloproteinase,Metalloproteinase, Matrix,Metalloproteinases, Matrix

Related Publications

Xueyou Hu, and Christine Beeton
January 2017, Methods in molecular biology (Clifton, N.J.),
Xueyou Hu, and Christine Beeton
January 1995, Analytical biochemistry,
Xueyou Hu, and Christine Beeton
January 2016, Methods in molecular biology (Clifton, N.J.),
Xueyou Hu, and Christine Beeton
November 2002, Journal of comparative pathology,
Xueyou Hu, and Christine Beeton
September 2014, Journal of clinical laboratory analysis,
Xueyou Hu, and Christine Beeton
November 2004, Current protocols in protein science,
Xueyou Hu, and Christine Beeton
May 2002, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Xueyou Hu, and Christine Beeton
December 2023, Physiological research,
Xueyou Hu, and Christine Beeton
January 2001, Methods in molecular medicine,
Xueyou Hu, and Christine Beeton
February 2003, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
Copied contents to your clipboard!